Publication:
The Spaces of Bilinear Multipliers of Weighted Lorentz Type Modulation Spaces

dc.authorscopusid57203490721
dc.authorscopusid50262327400
dc.authorscopusid55573680700
dc.contributor.authorGürkanll, A.T.
dc.contributor.authorKulak, O.
dc.contributor.authorSandikçi, A.
dc.date.accessioned2020-06-21T13:32:10Z
dc.date.available2020-06-21T13:32:10Z
dc.date.issued2016
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Gürkanll] Ahmet Turan, Department of Mathematics and Computer Science, İstanbul Arel Üniversitesi, Istanbul, Turkey; [Kulak] Öznur, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Sandikçi] Ayşe, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractFix a nonzero window g € S(Rn), a weight function w on R2n and 1 p,q ∞. The weighted Lorentz type modulation space M(p, q, w)(Rn) consists of all tempered distributions f € S'(Rn) such that the short time Fourier transform V<inf>g</inf>f is in the weighted Lorentz space L(p,q, wdμ)(R2n). The norm on M(p, q, w)(Rn) isen_US
dc.description.abstractfen_US
dc.description.abstractM(p,q,w) =en_US
dc.description.abstractV<inf>g</inf>fen_US
dc.description.abstractpq,w. This space was frstly defned and some of its properties were investigated for the unweighted case by Gürkanli in [9] and generalized to the weighted case by Sandikçi and Gürkanli in [16]. Let 1 p1,p2 ∞, 1 ≤ q3, q3 ≤ ∞, 1 ∞, ω1, ω2 be polynomial weights and ω3 be a weight function on R2n. In the present paper, we defne the bilinear multiplier operator from M(p1, q1, ω1)(Rn) x M(p2, q2, ω2)(Rn) to M(p3, q3, ω3)(Rn) in the following way. Assume that m(ξ, η) is a bounded function on R2n, and defne Bm(f,g)(x)= Rn∫Rn∫ f(ξ)g(η)m(ξ, η)e2πi ξ+η,x'ì dξdη forallf,g € S(Rn). The function m is said to be a bilinear multiplier on Rn of type (p1, q1, ω1,p1, q1, ω2;p3, q3,ω3) if B<inf>m</inf> is the bounded bilinear operator from M(p1, q1, ω1)(Rn) xM(p2, q1, ω2)(Rn) toM(p3, q1, ω3)(Rn). We denote by BM (p1, q1, ω1;p2, q 2, ω2)(Rn) the space of all bilinear multipliers of type (p1, q1,ω1;p2,q2,ωi;p3,q3, ω3), and defneen_US
dc.description.abstractmen_US
dc.description.abstract(p1,q1,ω1;p2,q2,ω2;p3,q3,ω3) =en_US
dc.description.abstractB<inf>m</inf>en_US
dc.description.abstract. We discuss the necessary and sufcient conditions for B<inf>m</inf> to be bounded. We investigate the properties of this space and we give some examples. © 2016 by De Gruyter.en_US
dc.identifier.doi10.1515/gmj-2016-0003
dc.identifier.endpage362en_US
dc.identifier.issn1572-9176
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84987768385
dc.identifier.scopusqualityQ2
dc.identifier.startpage351en_US
dc.identifier.urihttps://doi.org/10.1515/gmj-2016-0003
dc.identifier.volume23en_US
dc.identifier.wosWOS:000387132700006
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherWalter de Gruyter GmbHen_US
dc.relation.ispartofGeorgian Mathematical Journalen_US
dc.relation.journalGeorgian Mathematical Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBilinear Multiplieren_US
dc.subjectLorentz Spaceen_US
dc.subjectModulation Spaceen_US
dc.titleThe Spaces of Bilinear Multipliers of Weighted Lorentz Type Modulation Spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files