Publication: The Spaces of Bilinear Multipliers of Weighted Lorentz Type Modulation Spaces
| dc.authorscopusid | 57203490721 | |
| dc.authorscopusid | 50262327400 | |
| dc.authorscopusid | 55573680700 | |
| dc.contributor.author | Gürkanll, A.T. | |
| dc.contributor.author | Kulak, O. | |
| dc.contributor.author | Sandikçi, A. | |
| dc.date.accessioned | 2020-06-21T13:32:10Z | |
| dc.date.available | 2020-06-21T13:32:10Z | |
| dc.date.issued | 2016 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Gürkanll] Ahmet Turan, Department of Mathematics and Computer Science, İstanbul Arel Üniversitesi, Istanbul, Turkey; [Kulak] Öznur, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Sandikçi] Ayşe, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey | en_US |
| dc.description.abstract | Fix a nonzero window g € S(Rn), a weight function w on R2n and 1 p,q ∞. The weighted Lorentz type modulation space M(p, q, w)(Rn) consists of all tempered distributions f € S'(Rn) such that the short time Fourier transform V<inf>g</inf>f is in the weighted Lorentz space L(p,q, wdμ)(R2n). The norm on M(p, q, w)(Rn) is | en_US |
| dc.description.abstract | f | en_US |
| dc.description.abstract | M(p,q,w) = | en_US |
| dc.description.abstract | V<inf>g</inf>f | en_US |
| dc.description.abstract | pq,w. This space was frstly defned and some of its properties were investigated for the unweighted case by Gürkanli in [9] and generalized to the weighted case by Sandikçi and Gürkanli in [16]. Let 1 p1,p2 ∞, 1 ≤ q3, q3 ≤ ∞, 1 ∞, ω1, ω2 be polynomial weights and ω3 be a weight function on R2n. In the present paper, we defne the bilinear multiplier operator from M(p1, q1, ω1)(Rn) x M(p2, q2, ω2)(Rn) to M(p3, q3, ω3)(Rn) in the following way. Assume that m(ξ, η) is a bounded function on R2n, and defne Bm(f,g)(x)= Rn∫Rn∫ f(ξ)g(η)m(ξ, η)e2πi ξ+η,x'ì dξdη forallf,g € S(Rn). The function m is said to be a bilinear multiplier on Rn of type (p1, q1, ω1,p1, q1, ω2;p3, q3,ω3) if B<inf>m</inf> is the bounded bilinear operator from M(p1, q1, ω1)(Rn) xM(p2, q1, ω2)(Rn) toM(p3, q1, ω3)(Rn). We denote by BM (p1, q1, ω1;p2, q 2, ω2)(Rn) the space of all bilinear multipliers of type (p1, q1,ω1;p2,q2,ωi;p3,q3, ω3), and defne | en_US |
| dc.description.abstract | m | en_US |
| dc.description.abstract | (p1,q1,ω1;p2,q2,ω2;p3,q3,ω3) = | en_US |
| dc.description.abstract | B<inf>m</inf> | en_US |
| dc.description.abstract | . We discuss the necessary and sufcient conditions for B<inf>m</inf> to be bounded. We investigate the properties of this space and we give some examples. © 2016 by De Gruyter. | en_US |
| dc.identifier.doi | 10.1515/gmj-2016-0003 | |
| dc.identifier.endpage | 362 | en_US |
| dc.identifier.issn | 1572-9176 | |
| dc.identifier.issue | 3 | en_US |
| dc.identifier.scopus | 2-s2.0-84987768385 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 351 | en_US |
| dc.identifier.uri | https://doi.org/10.1515/gmj-2016-0003 | |
| dc.identifier.volume | 23 | en_US |
| dc.identifier.wos | WOS:000387132700006 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Walter de Gruyter GmbH | en_US |
| dc.relation.ispartof | Georgian Mathematical Journal | en_US |
| dc.relation.journal | Georgian Mathematical Journal | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Bilinear Multiplier | en_US |
| dc.subject | Lorentz Space | en_US |
| dc.subject | Modulation Space | en_US |
| dc.title | The Spaces of Bilinear Multipliers of Weighted Lorentz Type Modulation Spaces | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
