Publication: Asbest Kontamine Topraktan İzole Edilen Mikroorganizmalarda Metal ve Ağır Metal Direncinin Belirlenmesi ve Karakterizasyonu
Abstract
'Amyant' olarak da bilinen ve lifli kristal bir yapıya sahip bir mineral grubu olan asbest, magnezyum silikat, kalsiyum-magnezyum silikat, demir-magnezyum silikat ve kompleks sodyum-demir silikat bileşimleri şeklinde doğada bulunan bir polimerdir. Asbest inşaat malzemesi olarak çimento ürünleri, kimya, iç-dış cephe yapım malzemesi, tavan kaplama, tuğla ve kiremit, çatı malzemesi yapımı gibi birçok alanlarda yaygın kullanımdadır. Ancak, solunum veya içme suyu gibi etkenlerle asbest vücuda girdiğinde başta akciğer kanseri olmak üzere birçok hastalığa neden olabilmektedir. Asbestli bölgelerdeki toksisitenin asbest kontamine alanlardaki aşırı demir yükü nedenli olduğu ve de ağır metal kirliliği ya da makro-mikro element dengesizliğinden kaynaklandığı bildirilmiştir. Toprakta bulunan bakteri ve fungus gibi mikroorganizmalar asbestten demiri çıkararak onun toksisitesini azaltabilirler. Bu tez kapsamında günümüzde de ciddi bir sorun olan asbestin biyoremediasyonunu sağlayacak bir prototip suşun belirlenmesi ve karakterizasyonu amaçlanmıştır. Öncelikle Tokat il sınırları içerisinden daha önce temin edilmiş asbest kirliliği bulunan toprak örneklerinden 6 (4 bakteri ve 2 fungus) mikroorganizma izole edilmiş ve moleküler olarak tanımlanmıştır. Bu mikroorganizmalar Streptomyces sp. Asb3, Streptomyces sp. Asb6, Paenibacillus sp. Asb8, Lentzea sp. Asb10, Cladosporium sp. F1 ve Penicillium sp. F2 olarak adlandırılmışlardır. Ardından, mikroorganizmaların öncelikle asbest içeriğinde bulunan farklı konsantrasyonda metaller/ağır metallere (alüminyum, krom, magnezyum, demir, nikel, mangan vb.) karşı direnç/tolerans seviyeleri belirlenmiştir. En iyi tolerans gösteren Streptomyces sp. Asb6 ve Penicillium sp. F2 suşları ile yedi farklı ağır metal/metal içeriği kombinasyonu denenmiş ve en iyi tolerans/direnç gösteren suş olarak Penicillium sp. F2 bulunmuştur. Penicillium sp. F2 ile bu kez sıvı kültürlerde 4 farklı asbest içeriği kombinasyonunda fermantasyon yapılıp bu kültürlerde asbest biyoremediasyonunun karakterizasyonu (hücre içine alma, yüzeyde tutma, siderofor üretimi vb.) gerçekleştirilmiştir. Suşun asbesti hücre yüzeyinde/içerisinde tuttuğu, asbest varlığında fazla miktarda siderofor ürettiği belirlenmiştir. Elde edilen sonuçlar ışığında literatürde ilk kez mikroorganizmalarda asbest kirliliğine toleransın moleküler mekanizması aydınlatılmış ve asbest biyoremediasyonunda kullanılabilecek bir prototip suşun karakterizasyonu sağlanmıştır.
Asbestos, as a mineral group with a fibrous crystal structure found in nature in the form of magnesium-silicate, calcium-magnesium-silicate, iron-magnesium-silicate and complex sodium-iron silicate compounds. Asbestos is widely used as construction material, cement products, chemistry, interior-exterior construction material, ceiling covering, brick and tile, roofing material manufacturing. However, when asbestos enters the body through breathing or drinking water, it can cause many diseases, especially lung cancer. It has been reported that toxicity in asbestos-containing areas is due to excessive iron load and also due to heavy metal pollution or macro-micro element imbalance. Microorganisms such as soil bacteria and fungi can reduce the toxicity of asbestos by removing the iron. This thesis aimed to determine and characterize a prototype strain that will provide asbestos bioremediation, which is still a serious problem today. Firstly, 6 microorganisms (4 bacteria and 2 fungi) were isolated from asbestos-contaminated soil samples previously obtained from Tokat province borders and were molecularly identified. These were named as Streptomyces sp. Asb3, Streptomyces sp. Asb6, Paenibacillus sp. Asb8, Lentzea sp. Asb10, Cladosporium sp. F1 and Penicillium sp. F2. Then, the microorganims' resistance/tolerance levels to different toxic elements including different concentrations of metals/heavy metals (aluminum, chromium, magnesium, iron, nickel) present in asbestos content were determined. The best tolerant Streptomyces sp. Asb6 and Penicillium sp. F2 strains and seven different heavy metal/metal content combinations were tested and the best tolerant strain was Penicillium sp. F2. This time, fermentation was performed with Penicillium sp. F2 in liquid cultures in 4 different asbestos content combinations and the characterization of asbestos bioremediation in these cultures was performed. Thus, the strain retained asbestos on the cell surface/inside the cell and produced large amounts of siderophore in the presence of asbestos. In the light of the results obtained, the molecular mechanism of tolerance to asbestos-pollution in microorganisms was elucidated for the first time and a prototype strain in asbestos bioremediation was characterized.
Asbestos, as a mineral group with a fibrous crystal structure found in nature in the form of magnesium-silicate, calcium-magnesium-silicate, iron-magnesium-silicate and complex sodium-iron silicate compounds. Asbestos is widely used as construction material, cement products, chemistry, interior-exterior construction material, ceiling covering, brick and tile, roofing material manufacturing. However, when asbestos enters the body through breathing or drinking water, it can cause many diseases, especially lung cancer. It has been reported that toxicity in asbestos-containing areas is due to excessive iron load and also due to heavy metal pollution or macro-micro element imbalance. Microorganisms such as soil bacteria and fungi can reduce the toxicity of asbestos by removing the iron. This thesis aimed to determine and characterize a prototype strain that will provide asbestos bioremediation, which is still a serious problem today. Firstly, 6 microorganisms (4 bacteria and 2 fungi) were isolated from asbestos-contaminated soil samples previously obtained from Tokat province borders and were molecularly identified. These were named as Streptomyces sp. Asb3, Streptomyces sp. Asb6, Paenibacillus sp. Asb8, Lentzea sp. Asb10, Cladosporium sp. F1 and Penicillium sp. F2. Then, the microorganims' resistance/tolerance levels to different toxic elements including different concentrations of metals/heavy metals (aluminum, chromium, magnesium, iron, nickel) present in asbestos content were determined. The best tolerant Streptomyces sp. Asb6 and Penicillium sp. F2 strains and seven different heavy metal/metal content combinations were tested and the best tolerant strain was Penicillium sp. F2. This time, fermentation was performed with Penicillium sp. F2 in liquid cultures in 4 different asbestos content combinations and the characterization of asbestos bioremediation in these cultures was performed. Thus, the strain retained asbestos on the cell surface/inside the cell and produced large amounts of siderophore in the presence of asbestos. In the light of the results obtained, the molecular mechanism of tolerance to asbestos-pollution in microorganisms was elucidated for the first time and a prototype strain in asbestos bioremediation was characterized.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
110
