Publication:
Soil Quality Assessment Based on Machine Learning Approach for Cultivated Lands in Semi-Humid Environmental Condition Part of Black Sea Region

dc.authorscopusid56297811900
dc.authorscopusid21743556600
dc.authorscopusid16052385200
dc.authorwosidOdabas, Mehmet/Agy-1382-2022
dc.authorwosidAlaboz, Pelin/Abf-5309-2020
dc.authorwosidDengiz, Orhan/Abg-7284-2020
dc.contributor.authorAlaboz, Pelin
dc.contributor.authorOdabas, Mehmet Serhat
dc.contributor.authorDengiz, Orhan
dc.contributor.authorIDAlaboz, Pelin/0000-0001-7345-938X
dc.date.accessioned2025-12-11T00:51:27Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Alaboz, Pelin] Isparta Univ Appl Sci, Fac Agr, Dept Soil Sci & Plant Nutr, Isparta, Turkiye; [Odabas, Mehmet Serhat] Ondokuz Mayis Univ, Bafra Vocat Sch, Samsun, Turkiye; [Dengiz, Orhan] Ondokuz Mayis Univ, Fac Agr, Dept Soil Sci & Plant Nutr, Samsun, Turkiyeen_US
dc.descriptionAlaboz, Pelin/0000-0001-7345-938X;en_US
dc.description.abstractTo manage arable areas according to land resources for future generations, it is crucial to determine the quality of the soils. The main purpose of this study is to identify soil quality for cultivated lands in the semi-humid terrestrial ecosystem in the Black Sea region. Multi-criteria decision-analysis was performed in weighted linear combination approach and standard scoring function (linear-L and nonlinear-NL) integrated with GIS techniques and interpolation models It was tested to predict soil quality index (SQI) values using artificial neural network (SQI(ANN)). The soil quality index values obtained using the linear method ranged from 0.444 to 0.751, while those obtained using the non-linear method ranged from 0.315 to 0.683. As a result, we determined the soil quality indices of cultivation areas. According to our statistical analysis, there were no statistically significant differences between the soil quality index values obtained from SQI(L) and SQI(L-ANN) while the same results were found between SQI(NL) and SQI(NL-ANN). According to the cluster analysis, 98.2% similarity between SQIL and SQIL-ANN, and 99.2% between SQINL and SQINL-ANN was determined. In addition, the spatial distribution maps obtained by both the clustering analysis and the geostatistical analysis showed quite a lot of similarity between SQI values.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1080/03650340.2023.2248002
dc.identifier.endpage3532en_US
dc.identifier.issn0365-0340
dc.identifier.issn1476-3567
dc.identifier.issue15en_US
dc.identifier.scopus2-s2.0-85168148637
dc.identifier.scopusqualityQ1
dc.identifier.startpage3514en_US
dc.identifier.urihttps://doi.org/10.1080/03650340.2023.2248002
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39733
dc.identifier.volume69en_US
dc.identifier.wosWOS:001049866300001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofArchives of Agronomy and Soil Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectANNen_US
dc.subjectMachine Learningen_US
dc.subjectSoil Qualityen_US
dc.subjectSustainable Agricultureen_US
dc.subjectSoil Managementen_US
dc.subject>en_US
dc.titleSoil Quality Assessment Based on Machine Learning Approach for Cultivated Lands in Semi-Humid Environmental Condition Part of Black Sea Regionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files