Publication:
On the $$(1+u^2+u^3)$$-Constacyclic and Cyclic Codes Over the Finite Ring $$ {F}_2+u{F}_2+u^2{F}_2+u^3{F}_2+v{F}_2 $$

dc.authorscopusid57207960780
dc.authorscopusid55225938200
dc.authorscopusid35363583100
dc.contributor.authorGüzel, G.G.
dc.contributor.authorDertli, A.
dc.contributor.authorÇengellenmiş, Y.
dc.date.accessioned2025-12-11T00:22:20Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Güzel] Gülsüm Gözde, Trakya Üniversitesi, Edirne, Edirne, Turkey; [Dertli] Abdullah, Department of Mathematics, Ondokuz Mayis University Faculty of Science and Arts, Samsun, Turkey; [Çengellenmiş] Yasemin, Department of Mathematics, Trakya Üniversitesi, Edirne, Edirne, Turkeyen_US
dc.description.abstractIn this paper a new finite ring is introduced along with its algebraic properties. In addition, a new Gray map is defined on the ring. The Gray images of both the cyclic and the $$(1+u^{2}+u^{3})$$ -constacyclic codes over the finite ring are found to be permutation equivalent to binary quasicyclic codes. © 2019, Springer Nature Switzerland AG.en_US
dc.identifier.doi10.1007/978-3-030-12558-5_6
dc.identifier.endpage329en_US
dc.identifier.issn2522-0969
dc.identifier.issn2522-0977
dc.identifier.scopus2-s2.0-85129181850
dc.identifier.scopusqualityQ4
dc.identifier.startpage323en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-12558-5_6
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36214
dc.language.isoenen_US
dc.publisherBirkhauseren_US
dc.relation.ispartofTutorials, Schools, and Workshops in the Mathematical Sciencesen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleOn the $$(1+u^2+u^3)$$-Constacyclic and Cyclic Codes Over the Finite Ring $$ {F}_2+u{F}_2+u^2{F}_2+u^3{F}_2+v{F}_2 $$en_US
dc.typeBook Parten_US
dspace.entity.typePublication

Files