Publication:
Determination of Autoregressive Model Orders for Seizure Detection

dc.authorscopusid24460465000
dc.contributor.authorAydın, S.
dc.date.accessioned2020-06-21T14:53:31Z
dc.date.available2020-06-21T14:53:31Z
dc.date.issued2010
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aydın] Serap, Electrical and Electronics Engineering Department, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn the present study, a step-wise least square estimation algorithm (SLSA), implemented in a Matlab package called as ARfit, has been newly applied to clinical data for estimation of the accurate Auto-Regressive (AR) model orders of both normal and ictal EEG series where the power spectral density (PSD) estimations are provided by the Burg Method. The ARfit module is found to be usefull in comparison to a large variety of traditional methods such as Forward Prediction Error (FPE), Akaike's Information Criteria (AIC), Minimum Description Lenght (MDL), and Criterion of Autoregressive Transfer function (CAT) for EEG discrimination. According to tests, the FPE, AIC and CAT give the identical orders for both normal and epileptic series whereas the MDL produces lower orders. Considering the resulting PSD estimations, it can be said that the most descriptive orders are provided by the SLSA. In conclusion, the SLSA can mark the seizure, since the estimated AR model orders meet the EEG complexity/regularity such that the low orders indicate an increase of EEG regularity in seizure. Then, the SLSA is proposed to select the accurate AR orders of long EEG series in diagnose for many possible future applications. The SLSA implemented by ARfit module is found to be superior to traditional methods since it is not heuristic and it is less computational complex. In addition, the more reasonable orders can be provided by the SLSA. © TÜBİTAK.en_US
dc.identifier.doi10.3906/elk-0906-83
dc.identifier.endpage30en_US
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-76749097275
dc.identifier.scopusqualityQ3
dc.identifier.startpage23en_US
dc.identifier.urihttps://doi.org/10.3906/elk-0906-83
dc.identifier.volume18en_US
dc.identifier.wosWOS:000275603100002
dc.identifier.wosqualityQ3
dc.institutionauthorAydın, S.
dc.language.isoenen_US
dc.publisherTÜBİTAK Scientific & Technical Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.relation.journalTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAR Modelen_US
dc.subjectEEGen_US
dc.subjectSeizureen_US
dc.subjectStepwise Least Square Algorithmen_US
dc.titleDetermination of Autoregressive Model Orders for Seizure Detectionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files