Publication: Ortasında Dairesel Delik Bulunan Tabakalı Ortotropik Kompozit Plakaların Sonlu Elemanlar Yöntemi Kullanılarak Burkulma Analizi
Abstract
Kompozit malzemelerin karmaşık yapıları olmasından dolayı mekanik davranışlarını incelemek diğer malzemelere göre daha zordur. Bu yüzden tasarım yapılırken yalnızca teorik çalışmalar değil deneysel ve bilgisayar destekli programlarla da çalışmalar desteklenmelidir. Bu çalışmada, delik bulunmayan tabakalı kompozit plakanın ve ortasından dairesel delik açılmış tabakalı kompozit plakanın burkulma davranışları incelenmiştir. Malzeme olarak Epoxy Carbon UD (230 GPa) Prepreg kullanılmıştır. Analizlerde, ANSYS 2023 programından malzeme seçilimi yapılıp, 250x50x0,3 mm boyutlarında, delik çapları 0, 5, 10, 15, 20, 25 ve 30 mm olan dikdörtgen bir kompozit plaka oluşturulmuştur. Sonlu elemanlar yöntemi kullanılarak burkulma yükleri incelenmiştir. Fiber yönlenme açıları [0/0/0/0/0/0], [0/15/0/15/0/15], [0/30/0/30/0/30], [0/45/0/45/0/45], [0/60/0/60/0/60] ve [0/90/0/90/0/90] seçilerek toplamda 6 tabaka ve 1.8 mm kalınlığında tabakalı kompozit plakalar oluşturulmuştur. Bu çalışmada iki farklı sınır koşulu dikkate alınmıştır. İlk sınır koşulunda plaka, bir kenar ankastre mesnetle bağlanıp sabit tutulurken karşı kenar boş bırakılıp yük uygulanmıştır. İkinci sınır koşulunda ise plaka, bir kenar sabit mesnetli (Ux = Uy = Uz = 0) karşı kenar ise kayıcı mesnetli (Ux = Uy = 0) olup yük kayıcı mesnetin olduğu kenara uygulanmıştır. İlk olarak delik bulunmayan tabakalı kompozit plakada iki farklı sınır koşuluyla burkulma analizleri yapılmıştır. Daha sonra tabakalı kompozit plakanın ortasından dairesel delikler açılıp iki farklı sınır koşuluyla burkulma analizleri yapılmıştır. Delik bulunmayan kompozit plakada iki farklı sınır koşuluna göre burkulma yüklerinin karşılaştırılması yapılmıştır. Delikli kompozit plakalarda da iki farklı sınır koşuluna göre burkulma yükleri karşılaştırılmıştır. Fiber yönlenme açılarına göre delik bulunan ve bulunmayan tabakalı kompozit plakalarda kritik burkulma yükleri ve burkulma şekli karşılaştırılması yapılmıştır. Bu çalışmada deliğin tabakalı kompozit plakaya burkulma davranışı üzerinde yarattığı etki araştırılmış olup, burkulma yükleri birbirleriyle karşılaştırılmış ve delik bulunan tabakalı kompozit plakaların kritik burkulma yüklerinin deliksiz plakaya göre 3 modda da azaldığı gözlemlenmiştir. Çalışmadan elde edilen sonuçlar, plakada delik açılması ve delik çapının artırılması kritik burkulma yükünün azalmasına yol açtığını ve burkulma direncini olumsuz yönde etkilediğini göstermiştir. Sonuçlar grafik ve tablolar halinde sunulmuştur.
Since composite materials have complex structures, it is more difficult to examine their mechanical behavior than other materials. Therefore, when designing, not only theoretical studies but also experimental and computer-aided programs should be supported. In this study, the buckling behavior of a laminated composite plate without a hole and a laminated composite plate with a circular hole in the middle was examined. Epoxy Carbon UD (230 GPa) Prepreg was used as the material. In the analyses, a rectangular composite plate with dimensions of 250x50x0.3 mm and hole diameters of 0, 5, 10, 15, 20, 25 and 30 mm was formed by selecting the material from ANSYS 2023 program. Buckling loads were investigated using the finite element method. Fiber orientation angles [0/0/0/0/0/0/0/0/0], [0/15/0/15/0/15/0/15], [0/30/0/30/0/30/0/30], [0/45/0/45/0/45], [0/60/0/60/0/60] and [0/90/0/90/0/90] were chosen to form a total of 6 layers and 1.8 mm thick laminated composite plates. In this study, two different boundary conditions were created. In the first boundary condition, the plate is held stationary with one edge connected by a built-in bracket, while the opposite edge is left free and the load is applied. In the second boundary condition, one edge of the plate is fixedly supported (Ux = Uy = Uz = 0) and the opposite edge is sliding supported (Ux = Uy = 0) and the load is applied to the edge with the sliding bearing. First, the buckling analysis of the laminated composite plate without holes was performed with two different boundary conditions. Then circular holes were drilled through the center of the laminated composite plate and buckling analysis was performed with two different boundary conditions. For the composite plate without holes, buckling loads were compared for two different boundary conditions. Buckling loads for composite plates with holes were also compared for two different boundary conditions. Critical buckling loads and buckling shape were compared in laminated composite plates with and without holes according to fiber orientation angles. In this study, the effect of the hole on the laminated composite plate was investigated, the buckling loads were compared with each other, and it was observed that the critical buckling loads in the laminated composite plates with holes decreased in all 3 modes compared to the plate without holes. The results obtained from the study showed that drilling holes in the plate and increasing the hole diameter led to a decrease in the critical buckling load and negatively affected the buckling resistance. The results are presented in graphs and tables.
Since composite materials have complex structures, it is more difficult to examine their mechanical behavior than other materials. Therefore, when designing, not only theoretical studies but also experimental and computer-aided programs should be supported. In this study, the buckling behavior of a laminated composite plate without a hole and a laminated composite plate with a circular hole in the middle was examined. Epoxy Carbon UD (230 GPa) Prepreg was used as the material. In the analyses, a rectangular composite plate with dimensions of 250x50x0.3 mm and hole diameters of 0, 5, 10, 15, 20, 25 and 30 mm was formed by selecting the material from ANSYS 2023 program. Buckling loads were investigated using the finite element method. Fiber orientation angles [0/0/0/0/0/0/0/0/0], [0/15/0/15/0/15/0/15], [0/30/0/30/0/30/0/30], [0/45/0/45/0/45], [0/60/0/60/0/60] and [0/90/0/90/0/90] were chosen to form a total of 6 layers and 1.8 mm thick laminated composite plates. In this study, two different boundary conditions were created. In the first boundary condition, the plate is held stationary with one edge connected by a built-in bracket, while the opposite edge is left free and the load is applied. In the second boundary condition, one edge of the plate is fixedly supported (Ux = Uy = Uz = 0) and the opposite edge is sliding supported (Ux = Uy = 0) and the load is applied to the edge with the sliding bearing. First, the buckling analysis of the laminated composite plate without holes was performed with two different boundary conditions. Then circular holes were drilled through the center of the laminated composite plate and buckling analysis was performed with two different boundary conditions. For the composite plate without holes, buckling loads were compared for two different boundary conditions. Buckling loads for composite plates with holes were also compared for two different boundary conditions. Critical buckling loads and buckling shape were compared in laminated composite plates with and without holes according to fiber orientation angles. In this study, the effect of the hole on the laminated composite plate was investigated, the buckling loads were compared with each other, and it was observed that the critical buckling loads in the laminated composite plates with holes decreased in all 3 modes compared to the plate without holes. The results obtained from the study showed that drilling holes in the plate and increasing the hole diameter led to a decrease in the critical buckling load and negatively affected the buckling resistance. The results are presented in graphs and tables.
Description
Keywords
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
59
