Publication:
High-Gain Dual-Band Microstrip Antenna for 5G mmWave Applications: Design, Optimization, and Experimental Validation

dc.authorscopusid59730786300
dc.authorscopusid16230640200
dc.authorwosidKurnaz, Cetin/S-3469-2016
dc.contributor.authorIcmez, Bilal Okan
dc.contributor.authorKurnaz, Cetin
dc.contributor.authorIDIçmez, Bilal Okan/0000-0003-0438-5756
dc.contributor.authorIDKurnaz, Cetin/0000-0003-3436-899X
dc.date.accessioned2025-12-11T01:19:24Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Icmez, Bilal Okan] Tokat Gaziosmanpasa Univ, Tokat Vocat Sch, Dept Elect & Automat, TR-60250 Tokat, Turkiye; [Kurnaz, Cetin] Ondokuz Mayis Univ, Dept Elect & Elect Engn, TR-55139 Samsun, Turkiyeen_US
dc.descriptionIçmez, Bilal Okan/0000-0003-0438-5756; Kurnaz, Cetin/0000-0003-3436-899Xen_US
dc.description.abstractThis study presents a novel dual-band microstrip antenna operating at 28/38 GHz, which is designed for fifth generation (5G) and next-generation communications. The objective was to create a high-gain, single-element solution that addresses millimeter-wave (mmWave) challenges, like attenuation and signal loss, offering a more efficient alternative to complex array antennas. The antenna was designed using Rogers RT/duroid 5880 as a substrate, and CST simulations were used to optimize the return loss, gain, and efficiency. Analytical methods and parametric analyses were used to further optimize the design. Additionally, an SMP connector was integrated into the simulated model using Antenna Magus software, followed by further refinement through additional parametric studies. The final compact antenna (33 x 27 x 1.6 mm3) demonstrates excellent performance with simplified fabrication. The antenna achieved bandwidths of 1.12 GHz at 28 GHz and 1.27 GHz at 38 GHz, with remarkably low return loss values of -53.04 dB and -83.65 dB, respectively. The gain values reached 7.82 dBi at 28 GHz and 8.98 dBi at 38 GHz-prototype measurements closely aligned with simulations, confirming reliability. This study introduces a high-performance, single-element antenna that is both simple and complex. The meticulous optimization process, including SMP connector variations, minimized the fabrication sensitivity and improved the overall performance, thereby marking a significant advancement in antenna design.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/app15073993
dc.identifier.issn2076-3417
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-105002275137
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/app15073993
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42849
dc.identifier.volume15en_US
dc.identifier.wosWOS:001463720200001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofApplied Sciences-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDual-Band Microstrip Antennaen_US
dc.subject5Gen_US
dc.subjectMillimeter Waveen_US
dc.subjectAntenna Optimizationen_US
dc.subjectParametric Analysisen_US
dc.subject28/38 GHzen_US
dc.titleHigh-Gain Dual-Band Microstrip Antenna for 5G mmWave Applications: Design, Optimization, and Experimental Validationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files