Publication:
Attack Path Detection for IIoT Enabled Cyber Physical Systems: Revisited

dc.authorscopusid57212209490
dc.authorscopusid15833929800
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.authorwosidArat, Ferhat/Izd-6796-2023
dc.contributor.authorArat, Ferhat
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorIDArat, Ferhat/0000-0002-4347-0016
dc.contributor.authorIDAkleylek, Sedat/0000-0001-7005-6489
dc.date.accessioned2025-12-11T01:13:26Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Arat, Ferhat] Samsun Univ, Dept Software Engn, Samsun, Turkiye; [Akleylek, Sedat] Ondokuz Mayis Univ, Dept Comp Engn, Samsun, Turkiye; [Akleylek, Sedat] Ondokuz Mayis Univ, Cyber Secur & Informat Technol Res & Dev Ctr, Samsun, Turkiye; [Akleylek, Sedat] Univ Tartu, Tartu, Estoniaen_US
dc.descriptionArat, Ferhat/0000-0002-4347-0016; Akleylek, Sedat/0000-0001-7005-6489;en_US
dc.description.abstractIn this paper, we propose a generic vulnerability and risk assessment method for IIoT-enabled critical sys-tems. We focus on reducing risk factors and vulnerable structures in order to provide security issues for the IIoT and enabled complex systems. In addition to the existing risk assessment and related methods, we represent the IIoT-enabled network topology as a directed graph, and we develop an attack tree-based approach using graph theory. We assume that each device is a potential critical node due to the existing vulnerabilities, which are defined in the National Vulnerability Database (NVD), and we establish directed relations between nodes, considering cyber and physical interactions. We improve existing attack path-identifying methods using the Depth First Search (DFS) algorithm to find all the paths from the source to the target nodes. In the generated topology, each node has the pre-assigned Common Vulnerability Scoring System (CVSS) scores acting as a weight. We also implement the Floyd-Warshall algorithm to identify path risk levels. Finally, we assess the identified vulnerable paths from varying source and target pairs via path and node-reducing procedures, considering risk thresholds. We perform our simulation on a custom Python simulator, considering the transportation and supply sectors. We compare our results with the previous ones. Simulation results show that our proposed methods and procedures outperform existing risk assessment and filtering methods in terms of running time and attack path identification and filtering. (c) 2023 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipASELSANen_US
dc.description.sponsorshipThis study was partially supported by ASELSAN.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.cose.2023.103174
dc.identifier.issn0167-4048
dc.identifier.issn1872-6208
dc.identifier.scopus2-s2.0-85150300176
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cose.2023.103174
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42118
dc.identifier.volume128en_US
dc.identifier.wosWOS:000957166200001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Advanced Technologyen_US
dc.relation.ispartofComputers & Securityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIndustrial IoT Securityen_US
dc.subjectVulnerability and Risk Assessmenten_US
dc.subjectAttack Graphen_US
dc.subjectAttack Pathen_US
dc.subjectPath Filteringen_US
dc.subjectCyber Attacksen_US
dc.titleAttack Path Detection for IIoT Enabled Cyber Physical Systems: Revisiteden_US
dc.typeArticleen_US
dspace.entity.typePublication

Files