Publication:
Stocks Prices Prediction with Long Short-Term Memory

dc.authorwosidAkşehi̇r, Zinnet Duygu/Gwu-7564-2022
dc.authorwosidKiliç, Erdal/Hjy-2853-2023
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.contributor.authorAksehir, Zinnet Duygu
dc.contributor.authorKilic, Erdal
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorDongul, Mesut
dc.contributor.authorCoskun, Burak
dc.contributor.authorIDKiliç, Erdal/0000-0003-1585-0991
dc.date.accessioned2025-12-11T01:04:21Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aksehir, Zinnet Duygu; Kilic, Erdal; Akleylek, Sedat] Ondokuz Mayis Univ, Dept Comp Engn, Fac Engn, Samsun, Turkey; [Dongul, Mesut; Coskun, Burak] Ronesans Holding, Ankara, Turkeyen_US
dc.descriptionKiliç, Erdal/0000-0003-1585-0991;en_US
dc.description.abstractIt is a difficult problem to predict the one-day next closing price of stocks since there are many factors affecting stock prices. In this study, by using data from November 29, 2010 to November 27, 2019 and stocks for the closing price of the next day are predicted. The long short-term memory method, a type of recurrent neural networks, is preferred to develop the prediction model. The set of input variables created for the proposed model consists of stock price data, 29 technicals and four basic indicators. After the set of input variables is created, the one-day next closing prices of AKBNK and GARAN stocks are developed the model to predict. The model's prediction performance is evaluated with Root Mean Square Error(RMSE) metric. This value is calculated as 0.482 and 0.242 for GARAN and AKBNK stocks respectively. According to the results, the predictions realized with the set of input variables produced are sufficiently successful.en_US
dc.description.sponsorshipRonesans Holdingen_US
dc.description.sponsorshipThis work was supported by Ronesans Holding.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.5220/0009351602210226
dc.identifier.endpage226en_US
dc.identifier.isbn9789897584268
dc.identifier.startpage221en_US
dc.identifier.urihttps://doi.org/10.5220/0009351602210226
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41108
dc.identifier.wosWOS:000615960700022
dc.language.isoenen_US
dc.publisherScitepressen_US
dc.relation.ispartof5th International Conference on Internet of Things, Big Data and Security (IoTBDS) -- May 07-09, 2020 -- Prague, Czech Republicen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPredictionen_US
dc.subjectStocks Pricesen_US
dc.subjectLong Short-Term Memoryen_US
dc.titleStocks Prices Prediction with Long Short-Term Memoryen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files