Publication:
Polynomial Multiplication over Binary Fields Using Charlier Polynomial Representation with Low Space Complexity

dc.authorscopusid15833929800
dc.authorscopusid6504402955
dc.authorscopusid6603589033
dc.contributor.authorAkleylek, S.
dc.contributor.authorCenk, M.
dc.contributor.authorÖzbudak, F.
dc.date.accessioned2020-06-21T09:27:26Z
dc.date.available2020-06-21T09:27:26Z
dc.date.issued2010
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Akleylek] Sedat, Institute of Applied Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkey, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cenk] Murat, Institute of Applied Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkey; [Özbudak] Ferruh, Institute of Applied Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkey, Department of Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkeyen_US
dc.descriptionDIT; DRDO; DST; MSRIen_US
dc.description.abstractIn this paper, we give a new way to represent certain finite fields GF(2n ). This representation is based on Charlier polynomials. We show that multiplication in Charlier polynomial representation can be performed with subquadratic space complexity. One can obtain binomial or trinomial irreducible polynomials in Charlier polynomial representation which allows us faster modular reduction over binary fields when there is no desirable such low weight irreducible polynomial in other representations. This representation is very interesting for NIST recommended binary field GF(2283) since there is no ONB for the corresponding extension. We also note that recommended NIST and SEC binary fields can be constructed with low weight Charlier polynomials. © 2010 Springer-Verlag Berlin Heidelberg.en_US
dc.identifier.doi10.1007/978-3-642-17401-8_17
dc.identifier.endpage237en_US
dc.identifier.isbn9789819698936
dc.identifier.isbn9789819698042
dc.identifier.isbn9789819698110
dc.identifier.isbn9789819698905
dc.identifier.isbn9783032004949
dc.identifier.isbn9789819512324
dc.identifier.isbn9783032026019
dc.identifier.isbn9783032008909
dc.identifier.isbn9783031915802
dc.identifier.isbn9789819698141
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-78651097242
dc.identifier.scopusqualityQ3
dc.identifier.startpage227en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-642-17401-8_17
dc.language.isoenen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.relation.journalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBinary Field Representationen_US
dc.subjectCharlier Polynomialsen_US
dc.subjectPolynomial Multiplicationen_US
dc.subjectSubquadratic Space Complexityen_US
dc.titlePolynomial Multiplication over Binary Fields Using Charlier Polynomial Representation with Low Space Complexityen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files