Publication: Kesirli Fourier Çarpanları
Abstract
Fourier dönüşümü, durağan olmayan sinyal analizi bağlamında özellikle önemli olan sinyalin yerel zaman-frekans özellikleri hakkında bilgi vermez. Bu tür sinyalleri analiz etmek için tamsayı dereceli Fourier dönüşümünün bir genellemesi olan kesirli Fourier dönüşümü (FrFT) bu bağlamda kullanılabilir. Kesirli Fourier dönüşümü, iyi bilinen Fourier dönüşümünün matematiksel genelleştirilmesidir. Fourier analizinde, çarpan operatörü bir tür doğrusal operatör veya fonksiyonların dönüşümüdür. Bu operatörler, Fourier dönüşümünü değiştirerek bir fonksiyon üzerinde hareket ederler. Özel olarak, bir fonksiyonun Fourier dönüşümünü, çarpan veya sembol olarak bilinen belirli bir fonksiyonla çarparlar. Basit bir ifadeyle, çarpan, herhangi bir işlevde yer alan frekansları yeniden şekillendirir. Sinyal işlemede, bir çarpan operatörüne 'filtre' denir ve çarpan, filtrenin frekans yanıtıdır (veya transfer fonksiyonudur). Daha geniş bağlamda, çarpan operatörleri, bir operatörün (veya değişme operatörleri ailesinin) fonksiyonel hesabından kaynaklanan spektral çarpan operatörlerinin özel durumlarıdır. Bu çalışmada, Lebesgue uzayları üzerinde tanımlı olan Fourier çarpanlarının uzayı tanımlanacak ve bu uzayın özellikleri incelenecektir. Daha sonra ise bu tanım kesirli Fourier çarpanları uzayına genişletilecektir.
The Fourier transform does not provide information about the local time-frequency properties of the signal, which is particularly important in the context of non-stationary signal analysis. Fractional Fourier transform (FrFT), a generalization of integer order Fourier transform, can be used in this context to analyze such signals. The fractional Fourier transform is a mathematical generalization of the well-known Fourier transform. In Fourier analysis, the multiplier operator is a kind of linear operator or transform of functions. These operators act on a function by changing the Fourier transform. In particular, they multiply the Fourier transform of a function by a particular function known as a factor or symbol. In simple terms, the multiplier reshapes the frequencies involved in any function. In signal processing, a multiplier operator is called a 'filter' and the multiplier is the frequency response (or transfer function) of the filter. In a broader context, multiplier operators are special cases of spectral multiplier operators resulting from the functional calculation of an operator (or family of commutation operators). In this study, the space of Fourier multipliers defined on Lebesgue spaces will be defined and the properties of this space will be investigated. Later, this definition will be extended to the fractional Fourier multipliers space. Moreover, the Fourier multipliers space and the fractional Fourier space will be compared and the relationship with some known results will be examined.
The Fourier transform does not provide information about the local time-frequency properties of the signal, which is particularly important in the context of non-stationary signal analysis. Fractional Fourier transform (FrFT), a generalization of integer order Fourier transform, can be used in this context to analyze such signals. The fractional Fourier transform is a mathematical generalization of the well-known Fourier transform. In Fourier analysis, the multiplier operator is a kind of linear operator or transform of functions. These operators act on a function by changing the Fourier transform. In particular, they multiply the Fourier transform of a function by a particular function known as a factor or symbol. In simple terms, the multiplier reshapes the frequencies involved in any function. In signal processing, a multiplier operator is called a 'filter' and the multiplier is the frequency response (or transfer function) of the filter. In a broader context, multiplier operators are special cases of spectral multiplier operators resulting from the functional calculation of an operator (or family of commutation operators). In this study, the space of Fourier multipliers defined on Lebesgue spaces will be defined and the properties of this space will be investigated. Later, this definition will be extended to the fractional Fourier multipliers space. Moreover, the Fourier multipliers space and the fractional Fourier space will be compared and the relationship with some known results will be examined.
Description
Keywords
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
48
