Publication: Poliakrilamid Kriyojel Çatılar İle Santral Arteriyovenöz Pediküllü Prefabrikasyon
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
Yaşayan üç boyutlu dokular ve organlar elde edebilmek için, poröz bir hücre iskelesi ve vaskülerizasyon gereklidir. Bu çalışmanın amacı, tavşanlarda yeni ve çoğaltılabilir bir prefabrikasyon modeli geliştirebilmek ve bu modelin etkinliğini, biyoyıkımı olmayan poliakrilamid kriyojel hücre iskeleleri ile değerlendirmektir.Çalışmada dokuz tavşan kullanıldı. 2 cm çapında yarım-küre şeklinde ve por ölçüleri 1?100 µm aralığında olan gözenekli jel matriksler kriyojelasyon tekniği ile fabrike edildi. Vasküler indükleme ile prefabrikasyon prensibine dayanarak, bilateral torakodorsal (TD) ve derin sirkumfleks iliak (DSİ) damarlar, küre şeklindeki hücre iskelelerinin iki yarım-küresi arasından geçirildi. Her deneğin sırtında, dört adet pediküllü deney dokusu ve bir adet damar içermeyen kontrol dokusu oluşturuldu. Ekstrinsik vaskülerizasyona imkân sağlamak açısından yapılar çevre dokulardan izole edilmedi. Deney dokuları prefabrikasyondan 2 hafta (Grup 1), 4 hafta (Grup 2) ve 6 hafta (Grup 3) sonra pedikülleri üzerinde kaldırıldıktan sonra yerine sütüre edilerek transfer simülasyonu yapıldı. 2 hafta sonra yeni oluşan doku tipi ve inflamatuvar reaksiyonlar direk gözlem, mikroanjiyografi, damar yoğunluk analizi (?VesSeg Tool? damar segmentasyon yazılım programı) ve histoloji ile değerlendirildi.Tüm gruplarda (Grup 1, Grup 2, Grup 3) hücre iskelelerinin başlangıçtaki şekil ve hacimlerini koruduğu görsel ve histolojik olarak saptandı. Poliakrilamid hücre iskeleleri yoğun yabancı cisim reaksiyonuna neden oldu ve bağ doku oluşturdu. Bağ doku üremesi zamanla arttı. En yoğun bağ doku üremesi Grup 3 deney dokularında mevcuttu ve tüm hücre iskelesinin gözeneklerini doldurmuştu.Vaskülerizasyonun kantitatif analizinde, tüm gruplarda deney ve kontrol dokular arasında anlamlı fark saptandı (p<0,05). Deney dokularında ölçülen damar yoğunluğu gruplar arasında anlamlı arttı (p<0,05). Kontrol dokularda damar yoğunluğu Grup 1 ve Grup 2 arasında anlamlı artış göstermedi (p= 0,127). Grup 3 kontrol dokularının damar yoğunluğu hem Grup 1 ve hem de Grup 2 kontrol dokularının damar yoğunluklarından anlamlı yüksek saptandı (p<0,05).Sonuç olarak, poliakrilamid hücre iskelelerinin, vaskülerizasyon ve doku oluşturmak için elverişli materyaller olduğu teyit edildi. Mühendisliği yapılan dokularda vaskülerizasyonun iyileştirilmesi için ucuz bir biyometaryal kullanılarak, denek sayısını da azaltmada etkili, yeni bir prefabrikasyon modeli geliştirildi. Vasküler taşıyıcı ile prefabrikasyon yapılan bu model, prefabrikasyon süresinin artmasının ve transfer sırasında doku periferinde iskemi yaratılmasının dokuda vaskülerizasyonu kantitatif olarak artırdığını gösterdi.Anahtar kelimeler: Doku mühendisliği, prefabrikasyon, vaskülerizasyon, poliakrilamid
To engineer living 3 dimensional tissues and organs, a porous biomaterial scaffold and a dedicated vascular network is required. The purpose of this study is to develop a new and reproducible prefabrication model in rabbit and to test the efficiency of this model with a non-degradable polyacrylamide based cryogel scaffold for studying vascularization and new tissue formation.Nine rabbits were used for this study. Supermacroporous gel matrices which were 2 cm in diameter and had pore size range of 1?100 µm were produced by cryogelation. Bilateral thoracodorsal and deep circumflex iliac vascular pedicles of the animals were prepared to simulate prefabrication and sandwiched between two hemispheres of the scaffolds. In each animal, four spheres were implanted on pedicles as study groups and one sphere per animal was implanted at the back as control. The constructs were not separated from surrounding tissues to allow extrinsic vascularization. After the prefabrication, the implants were elevated at 2 (group 1), 4 (group 2) and 6 (group 3) weeks on corresponding pedicles and replaced again to simulate tissue transfer. After two weeks, vascularization of the constructs, composite of the new tissue formed and inflammatory responses were evaluated by means of direct observation, microangiography, vessel density analysis (VesSeg tool vessel segmentation software) and histology.The maintanence of scaffold?s initial shape and dimensions in all groups (Group 1, Group 2, and Group 3) was verified by direct observation and histology. Polyacrilamide scaffolds triggered an inflammatory reaction and generated connective tissue. The formation of connective tissue increased in the course of time. The most extensive connective tissue formation was observed in 6-week experimental constructs and the tissue spread throughout the pores of the scaffold.The quantitative analysis of the vascularization showed statistically significant differences between control and experimental tissues in each group (p < 0, 05). The increase in vessel densities of experimental tissues was statistically significant between the groups (p < 0, 05). The vessel densities of control tissues in Group 1 and Group 2 were not significantly different (p = 0,127). The vessel densities of control tissues in Group 3 were higher compared to both Group 2 and Group 1.The findings of this study demonstrated that polyacrilamide scaffolds are suitable materials to induce vascularization and tissue formation. In this study, an alternative prefabrication model which is effective in decreasing the reagent number, is introduced by using an inexpensive biomaterial for increasing the vascularization of engineered tissues. This model by using a vascular carrier for prefabrication demonstrated that the increasing the time of prefabrication and creating ischemia at the peripheral parts of the scaffold after tissue transfer, improves the vascularization quantitatively.Key words: Tissue engineering, prefabrication, vascularization, polyacrilamide
To engineer living 3 dimensional tissues and organs, a porous biomaterial scaffold and a dedicated vascular network is required. The purpose of this study is to develop a new and reproducible prefabrication model in rabbit and to test the efficiency of this model with a non-degradable polyacrylamide based cryogel scaffold for studying vascularization and new tissue formation.Nine rabbits were used for this study. Supermacroporous gel matrices which were 2 cm in diameter and had pore size range of 1?100 µm were produced by cryogelation. Bilateral thoracodorsal and deep circumflex iliac vascular pedicles of the animals were prepared to simulate prefabrication and sandwiched between two hemispheres of the scaffolds. In each animal, four spheres were implanted on pedicles as study groups and one sphere per animal was implanted at the back as control. The constructs were not separated from surrounding tissues to allow extrinsic vascularization. After the prefabrication, the implants were elevated at 2 (group 1), 4 (group 2) and 6 (group 3) weeks on corresponding pedicles and replaced again to simulate tissue transfer. After two weeks, vascularization of the constructs, composite of the new tissue formed and inflammatory responses were evaluated by means of direct observation, microangiography, vessel density analysis (VesSeg tool vessel segmentation software) and histology.The maintanence of scaffold?s initial shape and dimensions in all groups (Group 1, Group 2, and Group 3) was verified by direct observation and histology. Polyacrilamide scaffolds triggered an inflammatory reaction and generated connective tissue. The formation of connective tissue increased in the course of time. The most extensive connective tissue formation was observed in 6-week experimental constructs and the tissue spread throughout the pores of the scaffold.The quantitative analysis of the vascularization showed statistically significant differences between control and experimental tissues in each group (p < 0, 05). The increase in vessel densities of experimental tissues was statistically significant between the groups (p < 0, 05). The vessel densities of control tissues in Group 1 and Group 2 were not significantly different (p = 0,127). The vessel densities of control tissues in Group 3 were higher compared to both Group 2 and Group 1.The findings of this study demonstrated that polyacrilamide scaffolds are suitable materials to induce vascularization and tissue formation. In this study, an alternative prefabrication model which is effective in decreasing the reagent number, is introduced by using an inexpensive biomaterial for increasing the vascularization of engineered tissues. This model by using a vascular carrier for prefabrication demonstrated that the increasing the time of prefabrication and creating ischemia at the peripheral parts of the scaffold after tissue transfer, improves the vascularization quantitatively.Key words: Tissue engineering, prefabrication, vascularization, polyacrilamide
Description
Tez (tıpta uzmanlık) -- Ondokuz Mayıs Üniversitesi, 2008
Libra Kayıt No: 65161
Libra Kayıt No: 65161
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
91
