Publication:
Robust Treynor Ratio for Portfolio Selection

dc.authorscopusid60058566900
dc.authorscopusid56608963400
dc.authorscopusid55255321000
dc.authorwosidGündoğdu, Özge/Aac-8912-2019
dc.authorwosidDalar, Ali/G-3178-2018
dc.contributor.authorBasaran, Azize Zehra Celenli
dc.contributor.authorGundogdu, Ozge
dc.contributor.authorDalar, Ali Zafer
dc.date.accessioned2025-12-11T00:42:53Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Basaran, Azize Zehra Celenli] Ondokuz Mayis Univ, Carsamba Chamber Commerce Vocat Sch, Dept Finance Banking & Insurance, Samsun, Turkiye; [Gundogdu, Ozge] Suleyman Demirel Univ, Fac Econ & Adm Sci, Dept Econometr, Isparta, Turkiye; [Dalar, Ali Zafer] Giresun Univ, Fac Arts & Sci, Dept Data Sci & Analyt, Giresun, Turkiyeen_US
dc.description.abstractThe portfolio selection problem is fundamental in finance, aiming to construct an optimal portfolio that balances risk and return. Accurate calculation of risk and return is critically important, as market fluctuations can distort beta values and hinder the proper assessment of systematic risk. This study presents a robust portfolio optimization method that combines advanced beta estimation techniques (M, S, and MM estimators) with the Treynor ratio, a measure of portfolio performance, and genetic algorithms to enhance risk-adjusted returns. Using end-of-day stock returns from the Istanbul stock exchange 30 index between January 2, 2017, and December 31, 2024, the genetic algorithm is employed to identify the optimal portfolio by maximizing the robust Treynor ratio. The findings indicate that the MM estimator produces the most stable and efficient risk-adjusted return, outperforming traditional method. The optimal portfolio, identified through the genetic algorithm, consists of 16 stocks and achieves the highest Treynor ratio value. This study contributes to the field by demonstrating the integration of robust statistical methods with genetic algorithms, offering a resilient approach to portfolio management in the presence of potential outliers.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s10479-025-06863-7
dc.identifier.issn0254-5330
dc.identifier.issn1572-9338
dc.identifier.scopus2-s2.0-105017874585
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s10479-025-06863-7
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38689
dc.identifier.wosWOS:001586264000001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnals of Operations Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRobust Estimationen_US
dc.subjectTreynor Ratioen_US
dc.subjectPortfolio Selectionen_US
dc.subjectGenetic Algorithmen_US
dc.subjectC61en_US
dc.subjectG11en_US
dc.titleRobust Treynor Ratio for Portfolio Selectionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files