Publication: İkinci Dereceden Ayrık-Zamanlı Doğrusal Zamanla Değişen Sistemlerin Komütatif Ayrıştırılması
Abstract
Bu tezde ikinci dereceden doğrusal zamanla değişen herhangi bir ayrık-zaman sisteminin birinci dereceden iki alt sisteme ayrıştırılması için gerekli ve yeterli koşulları sunulmuştur. Başlangıçta ilk koşullar sıfır kabul edilerek Teorem 4.1 ile ifade edilen komütativite koşulları, ilk koşulların sıfırdan farklı olması durumunda da incelenmiş ve sonuçlar Teorem 4.2 ile sunulmuştur. Ayrıştırma formüllerini de içeren sonuçlar, MATLAB Simulink aracı kullanılarak çözülen örnekler tarafından doğrulanmıştır. Tez konusunun dayanıklılık, hassasiyet ve kararlılık gibi özellikleri içeren mühendislik uygulaması açısından önemi belirtilmiştir.
In this thesis, necessary and sufficient conditions for the decomposition of any kind of second-order discrete-time linear time-varying system as a commutative pairs of two first-order systems are presented. Commutativity conditions with zero initial conditions are first expressed by Theorem 4.1. Then, the conditions under non-zero initial conditions are studied and the results are presented by Theorem 4.2. The results, including decomposition formulas, are well verified by examples worked by using MATLAB Simulink tool. The importance of the thesis subject is emphasized considering the engineering applications such as sensitivity, robustness and stability.
In this thesis, necessary and sufficient conditions for the decomposition of any kind of second-order discrete-time linear time-varying system as a commutative pairs of two first-order systems are presented. Commutativity conditions with zero initial conditions are first expressed by Theorem 4.1. Then, the conditions under non-zero initial conditions are studied and the results are presented by Theorem 4.2. The results, including decomposition formulas, are well verified by examples worked by using MATLAB Simulink tool. The importance of the thesis subject is emphasized considering the engineering applications such as sensitivity, robustness and stability.
Description
Keywords
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
44
