Publication:
Some Properties of Sobolev Algebras Modelled on Lorentz Spaces

dc.authorwosidEryilmaz, İlker/Iqt-8747-2023
dc.contributor.authorEryilmaz, Ilker
dc.contributor.authorDuyar, Birsen Sagir
dc.contributor.authorIDEryilmaz, Ilker/0000-0002-3590-892X
dc.date.accessioned2025-12-11T01:02:02Z
dc.date.issued2014
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Eryilmaz, Ilker; Duyar, Birsen Sagir] Ondokuz Mayis Univ, Fac Sci & Arts, Dept Math, TR-55139 Kurupelit, Turkeyen_US
dc.descriptionEryilmaz, Ilker/0000-0002-3590-892Xen_US
dc.description.abstractIn this paper, firstly Lorentz-Sobolev spaces W-L(p,W-q) (k) (R-n) of integer order are introduced and some of their important properties are emphasized. Also, the Banach spaces A(L(pq))(k)(R-n) = L-1-(R-n)boolean AND W-L(p,q)(k) (R-n) (Lorentz-Sobolev algebras in the sense of H.Reiter) are studied. Then, using a result due to H.C.Wang, it is showed that Banach convolution algebras AkL(pq) (Rn) do not have weak factorization. Lastly, it is found that the multiplier algebra of A(L(pq))(k)(R-n) coincides with the measure algebra M (R-n) for 1 < p < infinity and 1 <= q < infinity.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.endpage91en_US
dc.identifier.issn0252-1938
dc.identifier.issn2065-961X
dc.identifier.issue1en_US
dc.identifier.scopusqualityQ4
dc.identifier.startpage83en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/40819
dc.identifier.volume59en_US
dc.identifier.wosWOS:000453589700009
dc.language.isoenen_US
dc.publisherUniv Babes-Bolyaien_US
dc.relation.ispartofStudia Universitatis Babes-Bolyai Mathematicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSobolev Spacesen_US
dc.subjectLorentz Spacesen_US
dc.subjectWeak Derivativeen_US
dc.subjectFP-Algebrasen_US
dc.subjectWeak Factorizationen_US
dc.subjectMultipliersen_US
dc.titleSome Properties of Sobolev Algebras Modelled on Lorentz Spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files