Publication: Bayesian Robust Data Envelopment Analysis With Heavy-Tailed Priors
| dc.authorscopusid | 12766595200 | |
| dc.authorscopusid | 36126813200 | |
| dc.authorwosid | Şenel, Talat/Nys-9905-2025 | |
| dc.authorwosid | Cengiz, Mehmet/Agz-9391-2022 | |
| dc.contributor.author | Cengiz, Mehmet Ali | |
| dc.contributor.author | Senel, Talat | |
| dc.date.accessioned | 2025-12-11T00:42:50Z | |
| dc.date.issued | 2025 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Cengiz, Mehmet Ali] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia; [Senel, Talat] Ondokuz Mayis Univ, Dept Stat, Fac Sci, Samsun, Turkiye | en_US |
| dc.description.abstract | Data envelopment analysis (DEA) remains one of the most widely used methods for evaluating the efficiency of decision-making units (DMUs). However, it is highly sensitive to outliers, especially in cases involving imbalanced data. Classical Bayesian DEA models typically employ Beta distributions as priors, which are not effective in mitigating the influence of outliers. To enhance robustness, we propose a Bayesian DEA model utilizing heavy-tailed priors, such as the Student-t and Cauchy distributions. These priors reduce the impact of outliers, resulting in more stable efficiency estimates. The superiority of the proposed approach is demonstrated through both simulated data and real-world banking data, showing significant improvements over Bootstrap DEA and conventional Bayesian DEA methods. | en_US |
| dc.description.sponsorship | Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-DDRSP2503] | en_US |
| dc.description.sponsorship | This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503). | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1155/jom/6484456 | |
| dc.identifier.issn | 2314-4629 | |
| dc.identifier.issn | 2314-4785 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-105021252898 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1155/jom/6484456 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/38669 | |
| dc.identifier.volume | 2025 | en_US |
| dc.identifier.wos | WOS:001610455100001 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley | en_US |
| dc.relation.ispartof | Journal of Mathematics | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Bayesian DEA | en_US |
| dc.subject | Heavy-Tailed Priors | en_US |
| dc.subject | Imbalanced Data | en_US |
| dc.subject | Outliers | en_US |
| dc.subject | Robust Efficiency | en_US |
| dc.title | Bayesian Robust Data Envelopment Analysis With Heavy-Tailed Priors | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
