Publication:
Bayesian Robust Data Envelopment Analysis With Heavy-Tailed Priors

dc.authorscopusid12766595200
dc.authorscopusid36126813200
dc.authorwosidŞenel, Talat/Nys-9905-2025
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.contributor.authorCengiz, Mehmet Ali
dc.contributor.authorSenel, Talat
dc.date.accessioned2025-12-11T00:42:50Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cengiz, Mehmet Ali] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia; [Senel, Talat] Ondokuz Mayis Univ, Dept Stat, Fac Sci, Samsun, Turkiyeen_US
dc.description.abstractData envelopment analysis (DEA) remains one of the most widely used methods for evaluating the efficiency of decision-making units (DMUs). However, it is highly sensitive to outliers, especially in cases involving imbalanced data. Classical Bayesian DEA models typically employ Beta distributions as priors, which are not effective in mitigating the influence of outliers. To enhance robustness, we propose a Bayesian DEA model utilizing heavy-tailed priors, such as the Student-t and Cauchy distributions. These priors reduce the impact of outliers, resulting in more stable efficiency estimates. The superiority of the proposed approach is demonstrated through both simulated data and real-world banking data, showing significant improvements over Bootstrap DEA and conventional Bayesian DEA methods.en_US
dc.description.sponsorshipDeanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-DDRSP2503]en_US
dc.description.sponsorshipThis work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1155/jom/6484456
dc.identifier.issn2314-4629
dc.identifier.issn2314-4785
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-105021252898
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1155/jom/6484456
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38669
dc.identifier.volume2025en_US
dc.identifier.wosWOS:001610455100001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofJournal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBayesian DEAen_US
dc.subjectHeavy-Tailed Priorsen_US
dc.subjectImbalanced Dataen_US
dc.subjectOutliersen_US
dc.subjectRobust Efficiencyen_US
dc.titleBayesian Robust Data Envelopment Analysis With Heavy-Tailed Priorsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files