Publication: Effects of Idebenone and Coenzyme Q10 on NLRP3/Caspase-1 Pathway Regulation on Ethanol-Induced Hepatotoxicity in Rats
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Chronic and excessive alcohol consumption leads to liver toxicity. There is a need to investigate effective therapeutic strategies to alleviate alcohol-induced liver injury, which remains the leading cause of liver-related morbidity and mortality worldwide. Therefore here, we looked into and evaluated how ethanol-induced hepatotoxicity was affected by coenzyme Q10 (CoQ10) and its analog, idebenone (IDE), on the NLRP3/caspase-1/IL-1 pathway. Hepatotoxicity induced in rats through the oral administration of gradually increasing dosages of ethanol (from 2 to 6 g/kg/day) over 30 days and the effect of CoQ10 (10 or 20 mg/kg) and IDE (50 or 100 mg/kg) were evaluated. Serum hepatotoxicity markers (ALT, AST, GGT, ALP, and TBIL), tissue oxidative stress markers and the mRNA expressions of IL-1 beta, IL-18, TGF-beta, NF-kappa B, NLRP3, and caspase-1 were evaluated. Masson's trichrome staining was also used to visualize fibrosis in the liver tissue. The results indicated that ethanol exposure led to hepatotoxicity as well as considerable NLRP3/caspase-1/IL-1 beta pathway activation. Moreover, CoQ10 or IDE treatment reduced measured parameters in a dosage-dependent manner. Thus, by inhibiting the NLRP3/caspase-1/IL-1 pathway, CoQ10 and IDE can prevent the hepatotoxicity caused by ethanol, although CoQ10 is more effective than IDE. This study will provide insight into new therapeutic avenues that take advantage of the anti-inflammatory and antioxidant properties of CoQ10 and IDE in ethanol-induced liver diseases.
Description
Halici, Zekai/0000-0001-6854-6059; Palabiyik-Yucelik, Saziye Sezin/0000-0002-6239-6114; Baydar, Terken/0000-0002-5497-9600; Bahador Zirh, Elham/0000-0002-6921-2365
Citation
WoS Q
Q3
Scopus Q
Q2
Source
Drug and Chemical Toxicology
Volume
47
Issue
6
Start Page
1205
End Page
1217
