Publication:
Using of Generalized Additive Model for Model Selection in Multiple Poisson Regression for Air Pollution Data

dc.authorscopusid16508006000
dc.authorscopusid12766595200
dc.contributor.authorTerzi, Y.
dc.contributor.authorCengiz, M.A.
dc.date.accessioned2020-06-21T14:55:05Z
dc.date.available2020-06-21T14:55:05Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Terzi] Yüksel, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractMultiple Poisson regression analysis is one of the most widely used statistical techniques in analysing air pollution data. It is a powerful tool when its assumptions are met, including that the relationships between the predictors and the response are a function such as straight-line, polynomial, or exponential. In many applications, however, the reliance on a defined mathematical function is difficult. Many phenomena do not have a relationship that can be easily defined. Generalized additive models (GAM) enable us to relax this assumption by replacing a defined function with a non-parametric smoother to uncover existing relationships. GAM can be used for model selection in multiple Poisson regression. This study focuses on GAM for model selection in multiple Poisson regression for modelling associations between air pollution and increases in hospital admissions for respiratory disease. © 2009 Academic Journals.en_US
dc.identifier.endpage871en_US
dc.identifier.issn1992-2248
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-70349645130
dc.identifier.startpage867en_US
dc.identifier.volume4en_US
dc.identifier.wosWOS:000270306000005
dc.language.isoenen_US
dc.publisherAcademic Journalsen_US
dc.relation.ispartofScientific Research and Essaysen_US
dc.relation.journalScientific Research and Essaysen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAir Pollutionen_US
dc.subjectCubic Splineen_US
dc.subjectGeneralized Additive Modelen_US
dc.subjectPoisson Regressionen_US
dc.titleUsing of Generalized Additive Model for Model Selection in Multiple Poisson Regression for Air Pollution Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files