Publication:
On Some Properties of the Spaces Awp(X)(R n)

dc.authorscopusid35101351000
dc.authorscopusid55666393900
dc.contributor.authorAydin, I.
dc.contributor.authorTuran Gürkanli, A.T.
dc.date.accessioned2020-06-21T09:27:58Z
dc.date.available2020-06-21T09:27:58Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aydin] Ismail, Department of Mathematics, Sinop Üniversitesi, Sinop, Turkey; [Turan Gürkanli] Ahmet, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractFor 1 ≤ p < ∞, A<inf>p</inf> (Rn) denotes the space of all complex-valued functions in L1 (Rn) whose Fourier transforms f̌ belong to Lp(Rn). A number of authors such as Larsen, Liu and Wang [12], Martin and Yap [14], Lai [11] worked on this space. Some generalizations to the weighted case was given by Gurkanli [7], Feichtinger and Gurkanli [4], Fischer, Gurkanli and Liu [5]. In the present paper we give another generalization of A<inf>p</inf> (Rn) to the generalized Lebesgue space Lp(x)(Rn). We define A p(x)<inf>w</inf> (Rn) to be the space of all complex-valued functions in L1<inf>w</inf> (Rn) whose Fourier transforms f̌ belong to the generalized Lebesgue space L p(x)(Rn). We endow it with a sum norm and show that A p(x)<inf>w</inf> (Rn) is an S<inf>w</inf>(Rn) space [2]. Further we discuss the multipliers of Ap(x)<inf>w</inf> (Rn).en_US
dc.identifier.endpage155en_US
dc.identifier.issn1598-7264
dc.identifier.issn2508-7916
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-70350325739
dc.identifier.scopusqualityQ3
dc.identifier.startpage141en_US
dc.identifier.volume12en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the Jangjeon Mathematical Societyen_US
dc.relation.journalProceedings of the Jangjeon Mathematical Societyen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleOn Some Properties of the Spaces Awp(X)(R n)en_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files