Publication:
The Relations between the Various Critical Temperatures of Thin FGM Plates

dc.authorscopusid57216163096
dc.authorscopusid55905441300
dc.authorscopusid57221203396
dc.authorwosidCan, Nurdogan/Aav-4914-2020
dc.authorwosidHassan, Ahmed/Aau-8603-2020
dc.authorwosidKurgan, Naci/A-9047-2018
dc.contributor.authorHassan, Ahmed Hassan Ahmed
dc.contributor.authorKurgan, Naci
dc.contributor.authorCan, Nihat
dc.contributor.authorIDHassan Ahmed Hassan, Ahmed/0000-0002-4880-0184
dc.date.accessioned2025-12-11T01:03:05Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Hassan, Ahmed Hassan Ahmed; Kurgan, Naci; Can, Nihat] Ondokuz Mayis Univ, Dept Mech Engn, TR-55139 Samsun, Turkeyen_US
dc.descriptionHassan Ahmed Hassan, Ahmed/0000-0002-4880-0184;en_US
dc.description.abstractThis work investigates the relations between the critical temperature of the thin FGM plates under various temperature distributions through the thickness resting on the Pasternak elastic foundation. Both rectangular and skew plates are investigated. The uniform, linear, and nonlinear temperature distributions through the plate's thickness are considered. Formulations are derived based on the classical plate theory (CPT) considering the von Karman geometrical nonlinearity taking the physical neutral plane as the reference plane. The partial differential formulation is separated into two sets of ordinary differential equations using the extended Kantorovich method (EKM). The stability equations and boundary conditions terms are derived according to Trefftz criteria using the variational calculus expressed in an oblique coordinate system. Novel multi-scale plots are presented to show the linear relations between the critical temperatures under various temperature distributions. The critical temperature of plates with different materials are also found linearly related. Resulting relations should be a huge time saver in the analysis process, as by knowing one critical temperature of the one FGM plate under one temperature distribution many other critical temperatures of many other FGM plates under any temperature distributions can be obtained instantly.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.22055/JACM.2020.34697.2459
dc.identifier.endpage1419en_US
dc.identifier.issn2383-4536
dc.identifier.scopus2-s2.0-85098529870
dc.identifier.scopusqualityQ1
dc.identifier.startpage1404en_US
dc.identifier.urihttps://doi.org/10.22055/JACM.2020.34697.2459
dc.identifier.urihttps://hdl.handle.net/20.500.12712/40950
dc.identifier.volume6en_US
dc.identifier.wosWOS:000595004400032
dc.language.isoenen_US
dc.publisherShahid Chamran University Ahvaz, Iranen_US
dc.relation.ispartofJournal of Applied and Computational Mechanicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulti-Term Extended Kantorovich Methoden_US
dc.subjectClassical Plate Theoryen_US
dc.subjectThermal Bucklingen_US
dc.subjectFunctionally Graded Materialen_US
dc.subjectPasternak Elastic Foundationen_US
dc.titleThe Relations between the Various Critical Temperatures of Thin FGM Platesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files