Publication:
Permission Weighting Approaches in Permission-Based Android Malware Detection

dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.authorwosidKiliç, Erdal/Hjy-2853-2023
dc.authorwosidSahin, Durmus/Aaj-7961-2020
dc.contributor.authorKural, Oguz Emre
dc.contributor.authorSahin, Durmus Ozkan
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorKilic, Erdal
dc.contributor.authorIDKiliç, Erdal/0000-0003-1585-0991
dc.date.accessioned2025-12-11T01:04:22Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kural, Oguz Emre; Sahin, Durmus Ozkan; Akleylek, Sedat; Kilic, Erdal] Ondokuz Mayis Univ, Bilgisayar Muhendisligi Bolumu, Samsun, Turkeyen_US
dc.descriptionKiliç, Erdal/0000-0003-1585-0991;en_US
dc.description.abstractWith the increasing use of mobile devices in daily life, the number of malware running on mobile devices is increasing. Increased malware may cause material and non-pecuniary damage, such as the seizure of personal information of users or the deterioration of personal data. Therefore, the need for systems that detect malware with high accuracy is increasing day by day. In this study, it is aimed to determine malware using the machine learning based static analysis technique for Android operating systems. In order to obtain high performance rates in malware detection, 14 different terms weighting techniques frequently used in text classification have been extensively adapted to this. Adapted methods were tested on 2 different datasets and compared with 3 different classification algorithms. The most successful classification result on the AMD data set was obtained from binary term weighting technique and support vector machine classification algorithm. The most successful classification result on the MODROID data set was obtained from discriminative weighting technique and support vector machine classification algorithm.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1109/ubmk.2019.8907187
dc.identifier.endpage139en_US
dc.identifier.isbn9781728139647
dc.identifier.scopusqualityN/A
dc.identifier.startpage134en_US
dc.identifier.urihttps://doi.org/10.1109/ubmk.2019.8907187
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41112
dc.identifier.wosWOS:000609879900026
dc.identifier.wosqualityN/A
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof4th International Conference on Computer Science and Engineering (UBMK) -- Sep 11-15, 2019 -- Samsun, Turkeyen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAndroid Malwareen_US
dc.subjectStatic Analysisen_US
dc.subjectMobile Securityen_US
dc.subjectFeature Extractionen_US
dc.subjectMobile Malwareen_US
dc.titlePermission Weighting Approaches in Permission-Based Android Malware Detectionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files