Publication:
A Commutative Neutrix Product of Ultradistributions

dc.contributor.authorFisher, B
dc.contributor.authorKilicman, A
dc.contributor.authorIDKilicman, Adem/0000-0002-1217-963X
dc.date.accessioned2020-06-21T11:28:29Z
dc.date.available2020-06-21T11:28:29Z
dc.date.issued1996
dc.departmentOMÜen_US
dc.department-tempONDOKUZ MAYIS UNIV,ARTS & SCI FAC,DEPT MATH,TR-55139 KURUPELIT,TURKEY --en_US
dc.descriptionConference on Different Aspects of Differentiability II -- SEP 18-23, 1995 -- WARSAW, POLANDen_US
dc.description.abstractLet f and g be distributions in D' and let f(n)(x) = f(x)kappa(n)(x), g(n)(x) = g(x)kappa(n)(x), where kappa(n)(x) is a certain function which converges to the identity function as n tends to infinity. Then the commutative neutrix convolution product f (sic) g is defined as the neutrix limit of the sequence {f(n) * g(n)}, provided the limit h exists in the sense that [GRAPHICS] for all phi is an element of D. If now delta(n)(sigma) = (2 pi)(-1) F(kappa(n)), where F denotes the Fourier transform, then the neutrix product (f) over tilde Delta (h) over tilde is defined by equation (f) over tilde Delta (g) over tilde = F (f (sic) g). Some results are given.en_US
dc.identifier.doi10.1080/10652469608819095
dc.identifier.endpage82en_US
dc.identifier.issn1065-2469
dc.identifier.startpage77en_US
dc.identifier.urihttps://doi.org/10.1080/10652469608819095
dc.identifier.urihttps://hdl.handle.net/20.500.12712/9842
dc.identifier.volume4en_US
dc.identifier.wosWOS:A1996WZ04800008
dc.language.isoenen_US
dc.publisherGordon Breach Sci Publ Ltden_US
dc.relation.journalIntegral Transforms and Special Functionsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistributionen_US
dc.subjectUltradistributionen_US
dc.subjectFourier Transformen_US
dc.subjectDelta-Functionen_US
dc.subjectNeutrixen_US
dc.subjectNeutrix Limiten_US
dc.subjectNeutrix Producten_US
dc.titleA Commutative Neutrix Product of Ultradistributionsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files