Publication: EEG-Based Motor Execution Classification of Upper and Lower Extremities Using Machine Learning
| dc.authorscopusid | 60129697500 | |
| dc.authorscopusid | 35732398300 | |
| dc.authorwosid | Tepe, Cengiz/Gvt-1840-2022 | |
| dc.contributor.author | Korkmaz, Ismail | |
| dc.contributor.author | Tepe, Cengiz | |
| dc.date.accessioned | 2025-12-11T00:41:20Z | |
| dc.date.issued | 2025 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Korkmaz, Ismail] Ondokuz Mayis Univ, Dept Intelligent Syst Engn, TR-55270 Samsun, Turkiye; [Tepe, Cengiz] Ondokuz Mayis Univ, Engn Fac, Elect & Elect Engn, Samsun, Turkiye | en_US |
| dc.description.abstract | This study classifies upper- and lower-extremity motor execution from electroencephalography (EEG). We compared two feature extractors, statistical features and Common Spatial Patterns (CSP), and four classifiers: K-Nearest Neighbors, Linear Discriminant Analysis (LDA), Multilayer Perceptron, and Support Vector Machine. Metrics were accuracy, F1, precision, and recall. CSP with LDA achieved the best, most consistent performance (72.5% accuracy); statistical features underperformed. We report real-time feasibility benchmarks, post-cue time-window analysis, and significance tests for classifiers. Findings support BCI and neuroprosthesis development, while noting subject variability and dataset specificity. Future work is real-time use, cross-dataset generalization, and hybrid deep learning. | en_US |
| dc.description.sponsorship | Ondokuz Mayis University | en_US |
| dc.description.sponsorship | The authors thank Ondokuz Mayis University for supporting this research. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1080/10255842.2025.2566260 | |
| dc.identifier.issn | 1025-5842 | |
| dc.identifier.issn | 1476-8259 | |
| dc.identifier.pmid | 41028971 | |
| dc.identifier.scopus | 2-s2.0-105018032959 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.uri | https://doi.org/10.1080/10255842.2025.2566260 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/38446 | |
| dc.identifier.wos | WOS:001584275500001 | |
| dc.identifier.wosquality | Q4 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis Ltd | en_US |
| dc.relation.ispartof | Computer Methods in Biomechanics and Biomedical Engineering | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Electroencephalography | en_US |
| dc.subject | Brain-Computer Interfaces | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Motor Execution Activities | en_US |
| dc.subject | Neuroprosthetics | en_US |
| dc.title | EEG-Based Motor Execution Classification of Upper and Lower Extremities Using Machine Learning | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
