Publication:
EEG-Based Motor Execution Classification of Upper and Lower Extremities Using Machine Learning

dc.authorscopusid60129697500
dc.authorscopusid35732398300
dc.authorwosidTepe, Cengiz/Gvt-1840-2022
dc.contributor.authorKorkmaz, Ismail
dc.contributor.authorTepe, Cengiz
dc.date.accessioned2025-12-11T00:41:20Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Korkmaz, Ismail] Ondokuz Mayis Univ, Dept Intelligent Syst Engn, TR-55270 Samsun, Turkiye; [Tepe, Cengiz] Ondokuz Mayis Univ, Engn Fac, Elect & Elect Engn, Samsun, Turkiyeen_US
dc.description.abstractThis study classifies upper- and lower-extremity motor execution from electroencephalography (EEG). We compared two feature extractors, statistical features and Common Spatial Patterns (CSP), and four classifiers: K-Nearest Neighbors, Linear Discriminant Analysis (LDA), Multilayer Perceptron, and Support Vector Machine. Metrics were accuracy, F1, precision, and recall. CSP with LDA achieved the best, most consistent performance (72.5% accuracy); statistical features underperformed. We report real-time feasibility benchmarks, post-cue time-window analysis, and significance tests for classifiers. Findings support BCI and neuroprosthesis development, while noting subject variability and dataset specificity. Future work is real-time use, cross-dataset generalization, and hybrid deep learning.en_US
dc.description.sponsorshipOndokuz Mayis Universityen_US
dc.description.sponsorshipThe authors thank Ondokuz Mayis University for supporting this research.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1080/10255842.2025.2566260
dc.identifier.issn1025-5842
dc.identifier.issn1476-8259
dc.identifier.pmid41028971
dc.identifier.scopus2-s2.0-105018032959
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1080/10255842.2025.2566260
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38446
dc.identifier.wosWOS:001584275500001
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofComputer Methods in Biomechanics and Biomedical Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectroencephalographyen_US
dc.subjectBrain-Computer Interfacesen_US
dc.subjectMachine Learningen_US
dc.subjectMotor Execution Activitiesen_US
dc.subjectNeuroprostheticsen_US
dc.titleEEG-Based Motor Execution Classification of Upper and Lower Extremities Using Machine Learningen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files