Publication:
Comparison of Different Feature Selection Methods Using Support Vector Machine for Estimating Eye Angles

dc.authorscopusid57984956100
dc.authorscopusid35732398300
dc.contributor.authorSuiçmez, A.
dc.contributor.authorTepe, C.
dc.date.accessioned2025-12-11T00:29:29Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Suiçmez] Alihan, Department of Electrical and Electronic Engineering, Kastamonu University, Kastamonu, Kastamonu, Turkey; [Tepe] Cengiz, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThis study aims to compare the effect of 5 different feature selection algorithms on support vector regression (SVR) to predict eye angular displacements corresponding to electrooculography (EOG) data. Feature extraction was done from the vertical and horizontal channels in the EOG signals in the data set. Eye angular displacements were estimated by processing these features with the SVR method. The performance of the feature selection methods was compared according to the RMSE evaluation criteria. The lowest error rates were obtained by using the minimum redundancy maximum relevance (fsrmrmr) feature selection method, 1,97E+00 in the vertical channel and 7,11E+00 in the horizontal channel. © 2022 IEEE.en_US
dc.identifier.doi10.1109/ISMSIT56059.2022.9932725
dc.identifier.endpage416en_US
dc.identifier.isbn9781665470131
dc.identifier.scopus2-s2.0-85142781005
dc.identifier.startpage413en_US
dc.identifier.urihttps://doi.org/10.1109/ISMSIT56059.2022.9932725
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36742
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 6th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2022 -- 2022-10-20 through 2022-10-22 -- Ankara -- 184355en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectrooculographyen_US
dc.subjectFeature Selectionen_US
dc.subjectGaze Angleen_US
dc.subjectMachine Learningen_US
dc.subjectRegressionen_US
dc.titleComparison of Different Feature Selection Methods Using Support Vector Machine for Estimating Eye Anglesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files