Publication:
BGP Anomali Tespitinde Hibrit Model Yaklaşimi

dc.authorscopusid57904163700
dc.authorscopusid57193407915
dc.authorscopusid57250610100
dc.authorscopusid57222053301
dc.authorscopusid57250610000
dc.contributor.authorUluer, A.F.
dc.contributor.authorAlbayrak, Z.
dc.contributor.authorOzalp, A.N.
dc.contributor.authorCakmak, M.
dc.contributor.authorAltunay, Hakan Can
dc.date.accessioned2025-12-11T00:29:28Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Uluer] Abdullah Fahreddin, Bilgisayar Mühendisliǧi Bölümü, Karabük Üniversitesi, Karabuk, Turkey; [Albayrak] Zafer, Bilgisayar Mühendisliǧi, Sakarya University of Applied Sciences, Serdivan, Sakarya, Turkey; [Ozalp] Ahmet Nusret, Bilgisayar Mühendisliǧi Bölümü, Karabük Üniversitesi, Karabuk, Turkey; [Cakmak] Muhammet, Bilgisayar Mühendisliǧi Bölümü, Karabük Üniversitesi, Karabuk, Turkey; [Altunay] Hakan Can, Bilgisayar Teknolojileri, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractBorder Gateway Protocol (BGP) is important for the quality of the connection between autonomous systems and the domains it is connected to. With attacks made at this level, any anomaly in the network will cause connection failures at the border gateways. In this study, a classification model is proposed by using machine learning and deep learning algorithms for the detection of BGP anomalies. The proposed model is developed based on decision trees and random forest and multilayer perceptron algorithms. Indirect BGP anomalies and connection failure anomalies in the model were evaluated with accuracy and F1-score. In the tests performed on the Slammer dataset, it was seen that the best result was obtained with 99,47 accuracy, and 98,85 F1-Score value in the model studied with the Hybrit Model. © 2022 IEEE.en_US
dc.identifier.doi10.1109/SIU55565.2022.9864921
dc.identifier.isbn9781665450928
dc.identifier.scopus2-s2.0-85138674071
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864921
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36738
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 30th Signal Processing and Communications Applications Conference, SIU 2022 -- 2022-05-15 through 2022-05-18 -- Safranbolu -- 182415en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnomalyen_US
dc.subjectBGPen_US
dc.subjectInternet Exchange Pointen_US
dc.titleBGP Anomali Tespitinde Hibrit Model Yaklaşimien_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files