Publication: Effects of Thermocycling on the Bond Strength of a Resin-Modified Glass Ionomer Cement: An In Vitro Comparative Study
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Abstract
This study investigated the effects of thermally induced stresses (thermocycling) on the shear bond strength of resin-modified, chemically cured, glass ionomer cement for use as an orthodontic bonding agent. A conventional no-mix composite resin was also used as a control. Mesh-based metal orthodontic brackets were bonded to extracted human premolars using either the resin-modified glass ionomer cement or the no-mix composite resin. Specimens were stored either in water at 37°C for 24 hours for baseline data or thermocycled between 5°C and 55°C for 200 and 20,000 cycles before testing the in vitro shear bond strengths. Thermocycling reduced shear bond strengths for all specimens. The resin-modified glass ionomer cement showed a 11.1% decrease after 200 thermocycles and 26.5% decrease after 20,000 thermocycles, whereas the no-mix adhesive resin showed only 5.7% and 17.9% reductions, respectively. Analysis of variance showed statistically significant differences between the mean shear bond strengths of the groups at the P < .001 level of significance. For the resin-modified glass ionomer cement groups, the predominant bond failure site was at the bracket-adhesive interface. The results of this study suggest strongly that resin-modified glass ionomer cements offer a viable alternative to conventional no-mix composite resins, with satisfactory in vitro shear bond strength even after 20,000 thermocycles.
Description
Citation
WoS Q
Q1
Scopus Q
Q1
Source
Angle Orthodontist
Volume
73
Issue
6
Start Page
692
End Page
696
