Publication:
Sw (g) ve S1,w (g) Uzayları ve Bazı Özellikleri

dc.contributor.advisorGürkanlı, A. Turan
dc.contributor.authorDoğan, Mevlüde
dc.date.accessioned2020-07-21T21:40:26Z
dc.date.available2020-07-21T21:40:26Z
dc.date.issued1998
dc.departmentOMÜ, Fen Bilimleri Enstitüsü, Matematik Anabilim Dalıen_US
dc.departmentFen Bilimleri Enstitüsü / Matematik Ana Bilim Dalı
dc.descriptionTez (doktora) –Ondokuz Mayıs Üniversitesi, 1998en_US
dc.descriptionLibra Kayıt No: 31487en_US
dc.description.abstractG bir lokal kompakt Abel grubu olsun. Bu çalışmanın bulgular bölümünün ilk kısmında, tanımı Cigler (3) çalışmasında verilen Llw(G) uzayındaki normlu ideallerin bazı özellikleri incelendi. LX{G) uzayından S(G) Segal cebirine giden çarpanlar uzayının M{G) sınırlı, regüler Borel ölçümler uzayının alt uzayı olan MS(G) uzayına izometrik izomorf olduğu Goldberg-Seltzer tararından (11) çalışmasında gösterildi. Bulgular bölümünün ikinci kısmında ÜW{G) uzayından tanımı Cigler (3) de verilen SW(G) uzayına giden çarpanlar uzayı benzer şekilde çalışıldı. Yine bu bölümde SW(G) uzayından kendi üzerine giden çarpanlar uzayının pseudomeasure uzayına homeomorf olduğu bulundu. Ayrıca bazı koşullar altında M[Llw(.G),Sw(.G)) ve M[SW(G)) uzayları araştırıldı. Segal cebirinin yansımalı olması durumunda LX(G) uzayından S(G) Segal cebirine giden çarpanlar uzayının S(G) Segal cebirine izometrik olarak izomorf olduğu Quyang(21) çalışmasında ispatlandı. Bu çalışmanın bulgular bölümünün üçüncü kısmında Llw(G) uzayından yansımalı SW(G) üzerine giden çarpanlar uzayının SW(G) uzayına homeomorf olduğu bulundu. Bulgular bölümünün son kısmında ise bu yapılara bir örnek olması bakımından Slw{G) uzayı tanımlanarak, bazı özellikleri incelendi.Anahtar Kelimeler: Normlu ideal, Çarpan, Banach cebiri.
dc.description.abstractLet G be a local compact Abelian group. In the first part of the main results, by using the definition of normed ideals on the space Llw{G) which has been given in the paper of Cigler (3), some properties of this normed ideals have been discussed. It has been proved that the multipliers from LX(G) space to S(G) Segal algebra is isometric isomorphism to the space MS(G) that is a subspace of M{G) bounded, regular Borel measure space in the paper of Goldberg-Seltzer (1 1). In the second part of the main results the multipliers from the space ÜW{G) to the space SW{G) the definition of which has been given in the paper of Cigler (3), has been studied with a similar method. In this part it has also been found that the multipliers from the space SW{G) onto itself is homeomorphic to pseudomeasure space. Additionally, inspected the spaces M(Llw(G),Sw(G)) and m(Sw(G)) has been studied under some conditions. It has been proved in the paper of Quyang(21) mat the space of multipliers from LX{G) to Segal algebra S(G) is isometric isomorphic to S(G) Segal algebra in case that Segal algebra is reflexive. In the third part of the main results of this thesis it has been found that the multipliers from LXW(G) space to SW(G) space which is reflexive is homeomorphic to SW(G) space. In the last part of the main result of this thesis some properties of the space 5lw(G) which is defined.Key Words: Normed ideal, Multipliers, Banach algebra.en_US
dc.formatV, 78 y. : 30 sm.en_US
dc.identifier.endpage86
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=r4I1HnmXxFQovUpyAyUmxDuphJ4o-WVCOm77C62uP0qB6g_zsWtHKgfuMtYJOU3W
dc.identifier.urihttp://libra.omu.edu.tr/tezler/31487.pdf
dc.identifier.yoktezid78543
dc.language.isotren_US
dc.language.isotr
dc.publisherOndokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US]
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematik
dc.subjectBanach Cebirleri
dc.subjectMathematicsen_US
dc.subjectUzay
dc.subjectBanach Algebrasen_US
dc.subjectSpaceen_US
dc.subject.otherTEZ DOK D654sen_US
dc.titleSw (g) ve S1,w (g) Uzayları ve Bazı Özellikleri
dc.titleThe Spaces Sw(g), S1w (g) and Some Properties of These Spacesen_US
dc.typeDoctoral Thesisen_US
dspace.entity.typePublication

Files