Publication:
On Cofinitely Rad-Supplemented Modules

dc.authorscopusid36661459200
dc.authorscopusid8400794600
dc.contributor.authorTürkmen, E.
dc.contributor.authorPancar, A.
dc.date.accessioned2020-06-21T09:27:51Z
dc.date.available2020-06-21T09:27:51Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Türkmen] Ergül, Department of Mathematics, Ondokuz Mayis University Faculty of Science and Arts, Samsun, Turkey; [Pancar] Ali, Department of Mathematics, Ondokuz Mayis University Faculty of Science and Arts, Samsun, Turkeyen_US
dc.description.abstractLet R be a ring and M be a left R-module. In this work some properties of (amply) cofinitely Rad-supplemented modules are developed. It is shown that if M contains a nonzero semi-hollow submodule then M is cofinitely Rad-supplemented if and only if M/N is cofinitely Rad-supplemented. Morever a module M with small radical is cofinitely Rad-supplemented such that Rad-supplements are supplements in M, then M is cofinitely supplemented. In addition, a ring R is left Rad-supplemented if and only if every left R-module is amply cofinitely Rad-supplemented. Also, we give a characterization of generalized semiperfect modules. © 2009 Academic Publications.en_US
dc.identifier.endpage162en_US
dc.identifier.issn1311-8080
dc.identifier.issn1314-3395
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-78649778888
dc.identifier.startpage153en_US
dc.identifier.volume53en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Pure and Applied Mathematicsen_US
dc.relation.journalInternational Journal of Pure and Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAmply) Cofinitely Radsupplemented Moduleen_US
dc.subjectCofinite Submoduleen_US
dc.subjectGeneralized Projective Coveren_US
dc.subjectRad-Supplement, (en_US
dc.titleOn Cofinitely Rad-Supplemented Modulesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files