Publication:
ResNet-Based Multiscale Feature Extraction and Attention Mechanism Integration for Hazelnut Disease Classification

dc.authorscopusid57205643107
dc.authorscopusid59392164200
dc.authorscopusid60092780900
dc.authorscopusid36543652400
dc.authorscopusid57214821223
dc.authorscopusid37065771200
dc.authorscopusid57209826825
dc.contributor.authorTürkoǧlu, M.
dc.contributor.authorKüçük, D.B.
dc.contributor.authorEren, S.N.
dc.contributor.authorCömert, Z.
dc.contributor.authorDurmus, O.
dc.contributor.authorAk, K.
dc.contributor.authorTurgut, N.C.
dc.date.accessioned2025-12-11T00:34:05Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Türkoǧlu] Muammer, Samsun University, Samsun, Samsun, Turkey; [Küçük] Deniz Bora, Samsun University, Samsun, Samsun, Turkey; [Eren] Sena Nur, Samsun University, Samsun, Samsun, Turkey; [Cömert] Zafer, Samsun University, Samsun, Samsun, Turkey; [Durmus] Omer, Samsun University, Samsun, Samsun, Turkey; [Ak] Kibar, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Turgut] Nagehan Cil, Karadeniz Tarimsal Araştirma Enstitüsü Müdürlüǧü, Turkey; [Uluca] Mansur, Karadeniz Tarimsal Araştirma Enstitüsü Müdürlüǧü, Turkey; [Eser] Ümit Ü., Karadeniz Tarimsal Araştirma Enstitüsü Müdürlüǧü, Turkeyen_US
dc.descriptionIsik Universityen_US
dc.description.abstractThis study aims to develop an artificial intelligence-based classification model for early detection of plant diseases that cause yield loss in hazelnut production in Turkey. Apple mosaic virus, Armillaria root rot, hazelnut bacterial blight, powdery mildew and Ganoderma root rot diseases were analyzed with images obtained from the Black Sea Region. The proposed model is based on ResNet-50 architecture augmented with Squeeze-and-Excitation (SE) blocks, including multi-scale feature extraction and channel-based attention mechanism. Evaluated with 10-fold cross-validation, the model achieved the highest success with 89.53% accuracy and 89.31% F1 score. The results show that AI-based early detection systems have significant potential in disease detection and improving agricultural productivity. © 2025 IEEE.en_US
dc.identifier.doi10.1109/SIU66497.2025.11112182
dc.identifier.isbn9798331566555
dc.identifier.scopus2-s2.0-105015590772
dc.identifier.urihttps://doi.org/10.1109/SIU66497.2025.11112182
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37527
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- 2025-06-25 through 2025-06-28 -- Istanbul -- 211450en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectAttentional Mechanismen_US
dc.subjectDeep Learningen_US
dc.subjectHazelnut Diseasesen_US
dc.subjectResNeten_US
dc.titleResNet-Based Multiscale Feature Extraction and Attention Mechanism Integration for Hazelnut Disease Classificationen_US
dc.title.alternativeFındık Hastalıklarının Sınıflandırılması I in Resnet Tabanlı Ok L Ekli Özellik İkarımı ve Dikkat Mekanizması Entegrasyonuen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files