Publication: ResNet-Based Multiscale Feature Extraction and Attention Mechanism Integration for Hazelnut Disease Classification
| dc.authorscopusid | 57205643107 | |
| dc.authorscopusid | 59392164200 | |
| dc.authorscopusid | 60092780900 | |
| dc.authorscopusid | 36543652400 | |
| dc.authorscopusid | 57214821223 | |
| dc.authorscopusid | 37065771200 | |
| dc.authorscopusid | 57209826825 | |
| dc.contributor.author | Türkoǧlu, M. | |
| dc.contributor.author | Küçük, D.B. | |
| dc.contributor.author | Eren, S.N. | |
| dc.contributor.author | Cömert, Z. | |
| dc.contributor.author | Durmus, O. | |
| dc.contributor.author | Ak, K. | |
| dc.contributor.author | Turgut, N.C. | |
| dc.date.accessioned | 2025-12-11T00:34:05Z | |
| dc.date.issued | 2025 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Türkoǧlu] Muammer, Samsun University, Samsun, Samsun, Turkey; [Küçük] Deniz Bora, Samsun University, Samsun, Samsun, Turkey; [Eren] Sena Nur, Samsun University, Samsun, Samsun, Turkey; [Cömert] Zafer, Samsun University, Samsun, Samsun, Turkey; [Durmus] Omer, Samsun University, Samsun, Samsun, Turkey; [Ak] Kibar, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Turgut] Nagehan Cil, Karadeniz Tarimsal Araştirma Enstitüsü Müdürlüǧü, Turkey; [Uluca] Mansur, Karadeniz Tarimsal Araştirma Enstitüsü Müdürlüǧü, Turkey; [Eser] Ümit Ü., Karadeniz Tarimsal Araştirma Enstitüsü Müdürlüǧü, Turkey | en_US |
| dc.description | Isik University | en_US |
| dc.description.abstract | This study aims to develop an artificial intelligence-based classification model for early detection of plant diseases that cause yield loss in hazelnut production in Turkey. Apple mosaic virus, Armillaria root rot, hazelnut bacterial blight, powdery mildew and Ganoderma root rot diseases were analyzed with images obtained from the Black Sea Region. The proposed model is based on ResNet-50 architecture augmented with Squeeze-and-Excitation (SE) blocks, including multi-scale feature extraction and channel-based attention mechanism. Evaluated with 10-fold cross-validation, the model achieved the highest success with 89.53% accuracy and 89.31% F1 score. The results show that AI-based early detection systems have significant potential in disease detection and improving agricultural productivity. © 2025 IEEE. | en_US |
| dc.identifier.doi | 10.1109/SIU66497.2025.11112182 | |
| dc.identifier.isbn | 9798331566555 | |
| dc.identifier.scopus | 2-s2.0-105015590772 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU66497.2025.11112182 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/37527 | |
| dc.language.iso | tr | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- 2025-06-25 through 2025-06-28 -- Istanbul -- 211450 | en_US |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Artificial Intelligence | en_US |
| dc.subject | Attentional Mechanism | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Hazelnut Diseases | en_US |
| dc.subject | ResNet | en_US |
| dc.title | ResNet-Based Multiscale Feature Extraction and Attention Mechanism Integration for Hazelnut Disease Classification | en_US |
| dc.title.alternative | Fındık Hastalıklarının Sınıflandırılması I in Resnet Tabanlı Ok L Ekli Özellik İkarımı ve Dikkat Mekanizması Entegrasyonu | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication |
