Publication:
Classification of the Ntev Signal Problem via the Incorporation of S-Transform Features and Different Types of Neural Network

dc.authorscopusid56453466100
dc.authorscopusid36460206000
dc.authorscopusid26666522700
dc.authorscopusid57211410254
dc.authorscopusid24483200900
dc.authorscopusid36809989400
dc.authorscopusid36806685300
dc.contributor.authorMat Yusoh, M.A.T.M.
dc.contributor.authorYalcin, T.
dc.contributor.authorBin Abidin, A.F.
dc.contributor.authorYasin, Z.M.
dc.contributor.authorDahlan, N.Y.
dc.contributor.authorMohamad, H.
dc.contributor.authorZakaria, Z.
dc.date.accessioned2020-06-21T09:44:01Z
dc.date.available2020-06-21T09:44:01Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Mat Yusoh] Mohd Abdul Talib, Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; [Yalcin] Turgay, Electrical and Electronic Engineering Faculty, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Bin Abidin] Ahmad Farid, Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia, Power System Planning and Operation (POSPO) Research, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; [Yasin] Zuhaila Mat, Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; [Dahlan] Nofri Yenita, Power System Planning and Operation (POSPO) Research, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; [Mohamad] H., Power System Planning and Operation (POSPO) Research, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; [Zakaria] Zuhaina Hj, Power System Planning and Operation (POSPO) Research, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; [Abbas] Wan Faezah, Power System Planning and Operation (POSPO) Research, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; [Salim] N. A., Power System Planning and Operation (POSPO) Research, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; [Rahimullah] Bibi Norasiqin Sheikh, Power System Planning and Operation (POSPO) Research, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysiaen_US
dc.description.abstractClassification of power quality (PQ) disturbance on the commercial building is one of the most important parts in monitoring, identifying and mitigating of PQ disturbance to avoid misunderstanding the behavior of events. A novel on the Neutral to Earth Voltage (NTEV) classification using S-transform (ST) and different type of neural networks are proposed. The types of a neural network composed of general regression neural network (GRNN), probabilistic neural network (PNN) and radial basis function neural network (RBFNN). NTEV signals are needed to analyse using ST to extract their features that used as an input for the neural network classification. Finally, the GRNN, PNN, and RBFNN are trained and tested using 100 and 150 samples respectively. The performance of GRNN, PNN, and RBFNN are compared in which to identify the best technique in classification the NTEV. © 2018 Universiti Teknikal Malaysia Melaka. All rights reserved.en_US
dc.identifier.endpage60en_US
dc.identifier.issn2180-1843
dc.identifier.issn2289-8131
dc.identifier.scopus2-s2.0-85047772248
dc.identifier.startpage55en_US
dc.identifier.volume10en_US
dc.language.isoenen_US
dc.publisherUniversiti Teknikal Malaysia Melaka isdpr@snu.ac.kren_US
dc.relation.ispartofJournal of Telecommunication, Electronic and Computer Engineeringen_US
dc.relation.journalJournal of Telecommunication, Electronic and Computer Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectNeural Networksen_US
dc.subjectNeutral to Earth Voltage (NTEV)en_US
dc.subjectPower Quality (PQ)en_US
dc.subjectS-Transform (ST)en_US
dc.titleClassification of the Ntev Signal Problem via the Incorporation of S-Transform Features and Different Types of Neural Networken_US
dc.typeArticleen_US
dspace.entity.typePublication

Files