Publication:
Work Accident Analysis with Machine Learning Techniques

dc.authorscopusid56589621700
dc.authorscopusid57205585718
dc.authorscopusid15833929800
dc.authorscopusid22953804000
dc.contributor.authorŞahin, D.O.
dc.contributor.authorSirin, B.
dc.contributor.authorAkleylek, S.
dc.contributor.authorKilic, E.
dc.date.accessioned2020-06-21T13:12:01Z
dc.date.available2020-06-21T13:12:01Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Şahin] Durmuş Ozkan, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Sirin] Burce, Rönesans Holding, Ankara, Turkey; [Akleylek] Sedat, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kilic] Erdal, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractAll over the world, serious investments have been made in recent years on workers' health and safety. With the importance given to health and safety of workers, new studies have been performed. In this study, data mining and machine learning techniques are applied to the real worker accident data. Firstly, data cleaning and feature selection are performed to use machine-learning algorithms, then the classification result obtained by using K-nearest neighbors (KNN) and Naive Bayes (NB) classification algorithms. Accuracy and F-measure metrics were used to measure classification success. The highest success rate was obtained with the KNN algorithm by 10 cross-validation. These values are 0.994075 and 0.993257 for the accuracy and F-measure respectively. © 2018 IEEE.en_US
dc.identifier.doi10.1109/UBMK.2018.8566564
dc.identifier.endpage219en_US
dc.identifier.isbn9781538678930
dc.identifier.scopus2-s2.0-85060616840
dc.identifier.startpage215en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK.2018.8566564
dc.identifier.wosWOS:000459847400040
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 3rd International Conference on Computer Science and Engineering, UBMK 2018 -- 2018-09-20 through 2018-09-23 -- Sarajevo -- 143560en_US
dc.relation.journal2018 3Rd International Conference on Computer Science and Engineering (Ubmk)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAccident of Employmenten_US
dc.subjectData Miningen_US
dc.subjectJob Securityen_US
dc.subjectKNNen_US
dc.subjectMachine Learningen_US
dc.subjectNaïve Bayesen_US
dc.subjectWorker Healthen_US
dc.titleWork Accident Analysis with Machine Learning Techniquesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files