Publication:
A New Method for Homoclinic Solutions of Ordinary Differential Equations

dc.authorscopusid6701370438
dc.authorscopusid7005653243
dc.authorscopusid7401922962
dc.contributor.authorAkyildiz, F.T.
dc.contributor.authorVajravelu, K.
dc.contributor.authorLiao, S.-J.
dc.date.accessioned2020-06-21T15:07:10Z
dc.date.available2020-06-21T15:07:10Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Akyildiz] Fahir Talay, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Vajravelu] Kuppalappalle, Department of Mathematics, University of Central Florida, Orlando, FL, United States; [Liao] Shijun Ijun, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, Chinaen_US
dc.description.abstractConsideration is given to the homoclinic solutions of ordinary differential equations. We first review the Melnikov analysis to obtain Melnikov function, when the perturbation parameter is zero and when the differential equation has a hyperbolic equilibrium. Since Melnikov analysis fails, using Homotopy Analysis Method (HAM, see [Liao SJ. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press; 2003; Liao SJ. An explicit, totally analytic approximation of Blasius' viscous flow problems. Int J Non-Linear Mech 1999;34(4):759-78; Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004;147(2):499-513] and others [Abbasbandy S. The application of the homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 2006;360:109-13; Hayat T, Sajid M. On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder. Phys Lett A, in press; Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn, in press]), we obtain homoclinic solution for a differential equation with zero perturbation parameter and with hyperbolic equilibrium. Then we show that the Melnikov type function can be obtained as a special case of this homotopy analysis method. Finally, homoclinic solutions are obtained (for nontrivial examples) analytically by HAM, and are presented through graphs. © 2009.en_US
dc.identifier.doi10.1016/j.chaos.2007.04.021
dc.identifier.endpage1082en_US
dc.identifier.issn0960-0779
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-62949170767
dc.identifier.scopusqualityQ1
dc.identifier.startpage1073en_US
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2007.04.021
dc.identifier.volume39en_US
dc.identifier.wosWOS:000265471400011
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofChaos Solitons & Fractalsen_US
dc.relation.journalChaos Solitons & Fractalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA New Method for Homoclinic Solutions of Ordinary Differential Equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files