Publication:
Performance Analysis of Rule Based Automatic SNN Algorithm on Big Data Sets

dc.authorscopusid57203167618
dc.authorscopusid57190740122
dc.authorscopusid22953804000
dc.contributor.authorCavus, A.
dc.contributor.authorKarabina, A.
dc.contributor.authorKilic, E.
dc.date.accessioned2025-12-10T23:54:32Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cavus] Aslihan, Rönesans Holding A.Ş, Turkey; [Karabina] Armagan, Bilgisayar Mühendisliği Bölümü, Amasya Üniversitesi, Amasya, Turkey; [Kilic] Erdal, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.descriptionAselsan; et al.; Huawei; IEEE Signal Processing Society; IEEE Turkey Section; Netasen_US
dc.description.abstractClustering is defined as the classification of patterns into groups (clusters) without supervision. The clustering of similarities of data is a complex process that can not be done with human hands. There are various clustering algorithms based on different principles in the literature. The SNN (Shared Nearest Neighborhood) algorithm is a density-based clustering algorithm that identifies similarities between the data by looking at the shared nearest neighbors by two data. The SNN algorithm uses parameters specifying the radius (Eps) that a user enters when clustering, a radius that limits a neighborhood of a point, and the minimum number of points (minPorts) that must be in an eps-neighborhood. This leads to clustering performans has dependency of user experience. A rule-based automatic SNN algorithm has been proposed to remove this dependency from the user. In this study, the performance of the rule-based automatic SNN algorithm over the data sets with 2000 and over sample numbers is examined and presented. © 2018 IEEE.en_US
dc.identifier.doi10.1109/SIU.2018.8404670
dc.identifier.endpage4en_US
dc.identifier.isbn9781538615010
dc.identifier.scopus2-s2.0-85050818933
dc.identifier.scopusqualityN/A
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.1109/SIU.2018.8404670
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36098
dc.identifier.wosqualityN/A
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2018-05-02 through 2018-05-05 -- Izmir -- 137780en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutomatic SNN Algorithmen_US
dc.subjectClusteringen_US
dc.subjectDensity-Based Algorithmen_US
dc.titlePerformance Analysis of Rule Based Automatic SNN Algorithm on Big Data Setsen_US
dc.title.alternativeKural Tabanlı Otomatik SNN Algoritmasının Büyük Veri Setleri Üzerindeki Performans İncelemesien_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files