Publication:
Usage of the XGBoost and MARS Algorithms for Predicting Body Weight in Kajli Sheep Breed

dc.authorscopusid57195204271
dc.authorscopusid56957224200
dc.authorscopusid24385660900
dc.authorscopusid36194275800
dc.authorscopusid56741052400
dc.authorscopusid24069611100
dc.authorscopusid59574578400
dc.authorwosidÖnder, Hasan/Aai-4149-2021
dc.authorwosidFaraz, Asim/Hjh-2681-2023
dc.authorwosidWaheed, Abdul/Lih-5064-2024
dc.authorwosidIshaq, Hafiz/Abg-5793-2021
dc.authorwosidTırınk, Cem/Gry-5893-2022
dc.contributor.authorFaraz, Asim
dc.contributor.authorTirink, Cem
dc.contributor.authorOnder, Hasan
dc.contributor.authorSen, Ugur
dc.contributor.authorIshaq, Hafiz Muhammad
dc.contributor.authorTauqir, Nasir Ali
dc.contributor.authorNabeel, Muhammad Shahid
dc.contributor.authorIDTirink, Cem/0000-0001-6902-5837
dc.date.accessioned2025-12-11T01:10:06Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Faraz, Asim; Ishaq, Hafiz Muhammad; Waheed, Abdul] Bahauddin Zakariya Univ, Dept Livestock & Poultry Prod, Multan, Pakistan; [Tirink, Cem] Igdir Univ, Fac Agr, Dept Anim Sci, Igdir, Turkiye; [Onder, Hasan] Ondokuz Mayis Univ, Fac Agr, Dept Anim Sci, Samsun, Turkiye; [Sen, Ugur] Ondokuz Mayis Univ, Fac Agr, Dept Agr Biotechnol, Samsun, Turkiye; [Tauqir, Nasir Ali] Islamia Univ Bahawalpur, Dept Anim Nutr, Bahawalpur, Pakistan; [Nabeel, Muhammad Shahid] Livestock Expt Stn Shergarh, Okara, Punjab, Pakistanen_US
dc.descriptionTirink, Cem/0000-0001-6902-5837;en_US
dc.description.abstractThis study aimed to utilize the XGBoost and MARS algorithms to predict present weight from body measurements. The algorithms have the potential to model nonlinear relationships between body measurements and weight, and this study attempted to find a model that provided the most accurate predictions of present weight. The current study was conducted with 152 animals in order to achieve a certain goal. To compare the model performances, goodness-of-fit criteria such as R-2, r, RMSE, CV, SDratio, PI, MAPE, AIC were used. According to the results of this study, the XGBoost algorithm was the most reliable model for predicting present weight from body measurement. Even if the XGBoost algorithm was the most accurate model, the MARS algorithm was the reliable model for the same aim. In addition, it is hoped that the results of this study will help researchers and breeders better understand the relationship between body measurements and weight and ultimately be able to help individuals better manage their weight. As a conclusion, in the current study, the XGBoost algorithm is an effective, efficient, and reliable tool for accurately estimating present weight from body measurements. This makes it an invaluable tool in rural areas, where traditional weighing scales may not be available or reliable.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s11250-023-03700-6
dc.identifier.issn0049-4747
dc.identifier.issn1573-7438
dc.identifier.issue4en_US
dc.identifier.pmid37500805
dc.identifier.scopus2-s2.0-85165867825
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s11250-023-03700-6
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41799
dc.identifier.volume55en_US
dc.identifier.wosWOS:001037474000003
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofTropical Animal Health and Productionen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSheepen_US
dc.subjectKajli Sheepen_US
dc.subjectXGBoosten_US
dc.subjectMARSen_US
dc.subjectBody Weighten_US
dc.titleUsage of the XGBoost and MARS Algorithms for Predicting Body Weight in Kajli Sheep Breeden_US
dc.typeArticleen_US
dspace.entity.typePublication

Files