Publication:
Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements

dc.authorscopusid55807479300
dc.authorscopusid12766595200
dc.contributor.authorTerzi, E.
dc.contributor.authorCengiz, M.A.
dc.date.accessioned2020-06-21T14:16:42Z
dc.date.available2020-06-21T14:16:42Z
dc.date.issued2013
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Terzi] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractWe investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time points within the time up to 60 min. A model for the sedation level of patients is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response, and then subsequent terms are introduced. To estimate the model, we use the Gibbs sampling given some appropriate prior distributions. © 2013 Erol Terzi and Mehmet Ali Cengiz.en_US
dc.identifier.doi10.1155/2013/579214
dc.identifier.issn1748-6718
dc.identifier.pmid23935702
dc.identifier.scopus2-s2.0-84880900611
dc.identifier.urihttps://doi.org/10.1155/2013/579214
dc.identifier.volume2013en_US
dc.identifier.wosWOS:000322248800001
dc.language.isoenen_US
dc.publisherHindawi Limiteden_US
dc.relation.ispartofComputational and Mathematical Methods in Medicineen_US
dc.relation.journalComputational and Mathematical Methods in Medicineen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleBayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurementsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files