Publication: Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements
| dc.authorscopusid | 55807479300 | |
| dc.authorscopusid | 12766595200 | |
| dc.contributor.author | Terzi, E. | |
| dc.contributor.author | Cengiz, M.A. | |
| dc.date.accessioned | 2020-06-21T14:16:42Z | |
| dc.date.available | 2020-06-21T14:16:42Z | |
| dc.date.issued | 2013 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Terzi] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey | en_US |
| dc.description.abstract | We investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time points within the time up to 60 min. A model for the sedation level of patients is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response, and then subsequent terms are introduced. To estimate the model, we use the Gibbs sampling given some appropriate prior distributions. © 2013 Erol Terzi and Mehmet Ali Cengiz. | en_US |
| dc.identifier.doi | 10.1155/2013/579214 | |
| dc.identifier.issn | 1748-6718 | |
| dc.identifier.pmid | 23935702 | |
| dc.identifier.scopus | 2-s2.0-84880900611 | |
| dc.identifier.uri | https://doi.org/10.1155/2013/579214 | |
| dc.identifier.volume | 2013 | en_US |
| dc.identifier.wos | WOS:000322248800001 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hindawi Limited | en_US |
| dc.relation.ispartof | Computational and Mathematical Methods in Medicine | en_US |
| dc.relation.journal | Computational and Mathematical Methods in Medicine | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
