Publication:
A Novel Android Malware Detection System: Adaption of Filter-Based Feature Selection Methods

dc.authorscopusid56589621700
dc.authorscopusid57190738698
dc.authorscopusid15833929800
dc.authorscopusid22953804000
dc.authorwosidKiliç, Erdal/Hjy-2853-2023
dc.authorwosidSahin, Durmus/Aaj-7961-2020
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.contributor.authorSahin, Durmus Ozkan
dc.contributor.authorKural, Oguz Emre
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorKilic, Erdal
dc.contributor.authorIDKiliç, Erdal/0000-0003-1585-0991
dc.date.accessioned2025-12-11T01:04:21Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sahin, Durmus Ozkan; Kural, Oguz Emre; Akleylek, Sedat; Kilic, Erdal] Ondokuz Mayis Univ, Fac Engn, Dept Comp Engn, Atakum, Samsun, Turkeyen_US
dc.descriptionKiliç, Erdal/0000-0003-1585-0991;en_US
dc.description.abstractAndroid is the most preferred mobile operating system in the world. Applications are available from both official application repositories and other application stores. For these reasons, there has been a remarkable increase in malware for the Android operating system in recent years. In this study, a novel Android malware detection system is proposed by using filter-based feature selection methods. The proposed approach is static Android malware detection based on machine learning. Permissions extracted from application files are used as features in the developed system. Dimension reduction is carried out with eight different feature selection methods to enhance the running time and efficiency of machine learning algorithms. While four of these methods are used in Android malware detection systems, the remaining four methods are adapted from text classification studies. The adapted methods are compared in terms of both extracted features and classification results. When the results are examined, it is shown that the adapted methods improve the efficiency of the classification algorithms and can be used in this field.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s12652-021-03376-6
dc.identifier.issn1868-5137
dc.identifier.issn1868-5145
dc.identifier.scopus2-s2.0-85110099752
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s12652-021-03376-6
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41110
dc.identifier.wosWOS:000673938600003
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofJournal of Ambient Intelligence and Humanized Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAndroid Malwareen_US
dc.subjectMalware Detectionen_US
dc.subjectFeature Selectionen_US
dc.subjectStatic Analysisen_US
dc.subjectMachine Learningen_US
dc.titleA Novel Android Malware Detection System: Adaption of Filter-Based Feature Selection Methodsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files