Publication:
Model Selection in Multivariate Adaptive Regressions Splines (MARS) Using Alternative Information Criteria

dc.authorscopusid58593135700
dc.authorscopusid12766595200
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.contributor.authorAdiguzel, Meryem Bekar
dc.contributor.authorCengiz, Mehmet Ali
dc.date.accessioned2025-12-11T00:37:18Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Adiguzel, Meryem Bekar] Aksaray Univ, Ortakoy Vocat Sch Higher Educ, Dept Finance Banking & RInsurance, TR-68400 Ortakoy, Aksaray, Turkiye; [Cengiz, Mehmet Ali] Ondokuz Mayıs Univ, Fac Sci, Dept Stat, TR-55270 Samsun, Turkiye; [Cengiz, Mehmet Ali] Ondokuz Mayis Univ, Letters Inst Grad Studies, TR-55270 Samsun, Turkiyeen_US
dc.description.abstractMultivariate Adaptive Regression Splines (MARS) is a useful non-parametric regression analysis method that can be used for model selection in high-dimensional data. Since MARS can identify and model complex, non-linear relationships between the dependent variable and independent variables without requiring any assumptions, it has advantage over simple linear regression techniques. Also, for simplifying the model building process and preventing overfitting, MARS can select automatically the variables to be included in the model, which is useful for datasets with many variables. While MARS is a flexible non-parametric regression method, generalized cross validation (GCV) technique is used within the MARS framework to avoid overfitting and to select the best model. GCV criterion is widely used and can be effective in many situations, however it has some criticism. These criticism are the arbitrary value of the smoothing parameter used in the algorithm of the GCV criterion and the models obtained using this criterion are highdimensional. In this paper, it is aimed to obtain the barest model that best explains the relationship between the dependent variable and independent variables by using alternative information criteria (Akaike information criterion (AIC), Schwarz Bayesian criterion (SBC) and information complexity criterion (ICOMP(IFIM)PEU)) instead of the use of smoothing parameters in order to put an end to the criticism. To achieve this goal, a simulation study was first conducted with a data set composed of variables that do and do not contribute to the dependent variable to test the success of the information criteria. As a consequence of this simulation work, when variables (which do not contribute to the dependent variable) are not included in the regression model, it demonstrates the success of the criteria in model selection. As a real data set, the reasons for loan defaults were investigated between the years 2005-2019 by utilizing data from 18 banks operating in Turkiye. The results obtained reveal the success of ICOMP(IFIM)PEU criterion in model selection.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.heliyon.2023.e19964
dc.identifier.issn2405-8440
dc.identifier.issue9en_US
dc.identifier.pmid37809827
dc.identifier.scopus2-s2.0-85171421551
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.heliyon.2023.e19964
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37951
dc.identifier.volume9en_US
dc.identifier.wosWOS:001079469600001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherCell Pressen_US
dc.relation.ispartofHeliyonen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMultivariate Adaptive Regression Splinesen_US
dc.subjectModel Selectionen_US
dc.subjectAkaike Information Criterionen_US
dc.subjectSchwarz Bayesian Information Criterionen_US
dc.subjectInformation Complexity Criterionen_US
dc.titleModel Selection in Multivariate Adaptive Regressions Splines (MARS) Using Alternative Information Criteriaen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files