Publication:
The Utilisation of Conceptual and Data-Driven Models for Hydrological Modelling in Semi-Arid and Humid Areas of the Antalya Basin in Turkey

dc.authorscopusid57207685341
dc.authorscopusid14013469000
dc.authorwosidSezen, Cenk/Aaa-3312-2022
dc.contributor.authorSezen, Cenk
dc.contributor.authorPartal, Turgay
dc.contributor.authorIDSezen, Cenk/0000-0003-1088-9360
dc.date.accessioned2025-12-11T01:09:10Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sezen, Cenk; Partal, Turgay] Ondokuz Mayis Univ, Dept Civil Engn, Samsun, Turkeyen_US
dc.descriptionSezen, Cenk/0000-0003-1088-9360en_US
dc.description.abstractHydrological modelling is essential for improving water management and planning efficiency and sustainability. In this study, lumped conceptual models [i.e., Genie Rural a 4 parametres Journalier (GR4J), Genie Rural a 6 parametres Journalier (GR6J)] and wavelet-based data-driven models [Wavelet-Genetic algorithm-Artificial neural network (WGANN), Wavelet-based support vector regression (WSVR)] were used for daily rainfall-runoff modelling by using three gauging stations, namely caydere Egirdir Gol Giris, Kargi c. Turkler and Naras D. Siseler, in semi-arid and humid areas of Antalya basin, Turkey. The Nash Sutcliffe efficiency (NSE), index of agreement (d) and root mean square error (RMSE) were used to evaluate the model performance. Although conceptual and data-driven models yielded a good performance, data-driven models could be more helpful, especially in semi-arid and small basins, challenging for conceptual models due to nonlinearity and complexity. The best runoff forecasting performance improvement was observed in caydere Egirdir Gol Giris with the WGANN (NSE = 0.96, d = 0.99, RMSE = 0.5 mm/d), WSVR (NSE = 0.95, d = 0.99, RMSE = 0.6 mm/d) against the GR4J (NSE = 0.53, d = 0.79, RMSE = 1.8 mm/d) and the GR6J (NSE = 0.49, d = 0.78, RMSE = 1.8 mm/d). It was also found that the GR4J and GR6J yielded a similar performance. Data denoising via wavelet transformation and input selection had a significant role in developing performance for the data-driven models. Data-driven models yielded better results for the forecasting of extreme flows. In this regard, using and integrating the useful parts of the conceptual and data-driven models could be more favourable.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s11600-022-00746-2
dc.identifier.endpage915en_US
dc.identifier.issn1895-6572
dc.identifier.issn1895-7455
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85125799907
dc.identifier.scopusqualityQ2
dc.identifier.startpage897en_US
dc.identifier.urihttps://doi.org/10.1007/s11600-022-00746-2
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41646
dc.identifier.volume70en_US
dc.identifier.wosWOS:000765729400001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer Int Publ Agen_US
dc.relation.ispartofActa Geophysicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAntalya Basinen_US
dc.subjectConceptualen_US
dc.subjectDaily Rainfall-Runoffen_US
dc.subjectData-Drivenen_US
dc.subjectHumid Semi-Ariden_US
dc.subjectTurkeyen_US
dc.titleThe Utilisation of Conceptual and Data-Driven Models for Hydrological Modelling in Semi-Arid and Humid Areas of the Antalya Basin in Turkeyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files