Publication:
Pathways of Volcanic Glass Alteration in Laboratory Experiments Through Inorganic and Microbially-Mediated Processes

dc.authorscopusid7005324543
dc.authorscopusid14061851900
dc.authorscopusid36543880400
dc.authorscopusid6701768394
dc.authorscopusid7005936696
dc.authorscopusid7003681791
dc.contributor.authorCuadros, J.
dc.contributor.authorAfsin, B.
dc.contributor.authorJadubansa, P.
dc.contributor.authorArdakani, M.
dc.contributor.authorAscaso, C.
dc.contributor.authorWierzchos, J.
dc.date.accessioned2020-06-21T09:42:09Z
dc.date.available2020-06-21T09:42:09Z
dc.date.issued2013
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cuadros] Javier, Department of Earth Sciences, The Natural History Museum, London, London, United Kingdom; [Afsin] Beytullah, Department of Earth Sciences, The Natural History Museum, London, London, United Kingdom, Department of Chemistry, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Jadubansa] Premroy, Department of Life Science, The Natural History Museum, London, London, United Kingdom; [Ardakani] Mahmoud G., Department of Materials, Imperial College London, London, United Kingdom; [Ascaso] Carmen, Department of Environmental Biology, CSIC - Museo Nacional de Ciencias Naturales (MNCN), Madrid, Madrid, Spain; [Wierzchos] J., Department of Environmental Biology, CSIC - Museo Nacional de Ciencias Naturales (MNCN), Madrid, Madrid, Spainen_US
dc.description.abstractRhyolitic obsidian was reacted with natural waters to study the effect of water chemistry and biological activity on the composition and formation mechanisms of clay. Two sets of experiments (18 months, 6 years) used fresh, hypersaline water (Mg-Na-SO4-Cl- and NaCl-rich) and seawater. The 6-year experiments produced the transformation of obsidian into quartz, apparently by in situ re-crystallization (Cuadros et al., 2012). The most abundant neoformed clay was dioctahedral (typically montmorillonite), indicating chemical control by the glass (where Al > Mg). Altered glass morphology and chemistry in the 18-months experiments indicated in situ transformation to clay. Magnesium-rich (saponite) clay formed under water-chemistry control in the bulk and within biofilms with elevated Mg concentration (Cuadros et al., 2013). The contact between microbial structures and glass was very intimate. Glass transformation into quartz may be due to some characteristic of the obsidian and/or alteration conditions. Such combination needs not to be uncommon in nature and opens new possibilities of quartz origin. © 2013 The Mineralogical Society.en_US
dc.identifier.doi10.1180/claymin.2013.048.3.01
dc.identifier.endpage445en_US
dc.identifier.issn0009-8558
dc.identifier.issn1471-8030
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84885152700
dc.identifier.scopusqualityQ2
dc.identifier.startpage423en_US
dc.identifier.urihttps://doi.org/10.1180/claymin.2013.048.3.01
dc.identifier.volume48en_US
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.relation.ispartofClay Mineralsen_US
dc.relation.journalClay Mineralsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiologically-Mediated Formation of Clayen_US
dc.subjectCryo-SEMen_US
dc.subjectMineral-Microbe Interactionen_US
dc.subjectQuartz Formationen_US
dc.subjectTEM-AEMen_US
dc.subjectVolcanic Glass Alteration to Clayen_US
dc.titlePathways of Volcanic Glass Alteration in Laboratory Experiments Through Inorganic and Microbially-Mediated Processesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files