Publication:
An ANN-Wavelet Based Distribution Transformer Protection

dc.authorscopusid57204548504
dc.authorscopusid22433630600
dc.contributor.authorKahraman, K.T.
dc.contributor.authorÖzgönenel, O.
dc.date.accessioned2025-12-11T00:33:06Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kahraman] Kübra Tetik, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Özgönenel] Okan, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractTransformers are crucial components in electrical power systems, serving as vital links for efficient energy transmission and distribution. With the increasing integration of renewable energy sources and the need for enhanced grid resilience, hybrid transformers have emerged as a promising solution. Combining the benefits of traditional transformers with modern technologies, hybrid transformers offer improved performance, reduced environmental impact, and advanced functionalities. However, this technological advancement also calls for equally advanced protection mechanisms to ensure their reliable and safe operation. In this paper, artificial neural network based approach is used to protect a two-winding transformer in laboratory environment. Feature vectors are differential currents and experimental studies cover energizing, sympathetic inrush currents, and internal faults. Simulation and real times experiments show that the proposed hybrid transformer protection scheme is able to detect normal and faulty conditions. © The Institution of Engineering & Technology 2024.en_US
dc.identifier.doi10.1049/icp.2024.2129
dc.identifier.endpage7en_US
dc.identifier.isbn9781839537776
dc.identifier.isbn9781837241217
dc.identifier.isbn9781839538544
dc.identifier.isbn9781837241989
dc.identifier.isbn9780863419027
dc.identifier.isbn9781849197328
dc.identifier.isbn9781839539961
dc.identifier.isbn9781839538650
dc.identifier.isbn9781785618468
dc.identifier.isbn9781837243143
dc.identifier.issn2732-4494
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85204300861
dc.identifier.scopusqualityQ4
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.1049/icp.2024.2129
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37331
dc.identifier.volume2024en_US
dc.language.isoenen_US
dc.publisherInstitution of Engineering and Technologyen_US
dc.relation.ispartofIET Conference Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Network (ANN)en_US
dc.subjectDifferential Currenten_US
dc.subjectHybrid Transformer (HT)en_US
dc.subjectInternal Faultsen_US
dc.subjectWaveletsen_US
dc.titleAn ANN-Wavelet Based Distribution Transformer Protectionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files