Publication: Potansiyel Denklemi ve Uygulamaları
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
Üç bölümden oluşan bu çalışmanın birinci bölümünde konuya bir giriş ile birlikte, iyi bilinen temel kavramlara yer verilmiştir. ikinci bölümde, çalışmanın esasını teşkil eden potansiyel denkleminin ( Laplace denklemi ) ortaya çıkışı ve bazı uygulama ları verilmiştir. Ayrıca, bu bölümde Laplace denkleminin silindirik ve küresel koordinatlardaki formları kullanılarak potansiyele dayalı fiziksel problemlerin çözümüne ve iki boyutlu sıvı akışları gibi, ba zı mühendislik konularına uygulanışı üzerinde durulmuştur. Bunun yanısıra, ısı iletimi problemlerinin incelenmesinde Laplace denk leminin üstlendiği yardımcı denklem olma özelliğine yer verilmiştir. Çalışmanın son bölümünde ise, ' Harmonik fonksiyonların bazı özellikleri ' başlığı altında Laplace denkleminin çözümünde konform dönüşümlerin klasik uygulanışı ve aynı denklem için yeni çözümler veren bir teorem verilmiştir. Daha sonra, Laplace denk leminin kompleks analizdeki önemi belirtilerek, kompleks değiş kenli fonksiyonların iki değişkenli Laplace denklemi ile olan iliş kileri açıklanmıştır.
A general introduction together with the well-known basic concepts has been presented in the first chapter of the present study. In the second chapter, the derivation of potential equation (Laplace equation) which is fundamental to this study and some applications of it were given.In addition, the applicability of the cylindirical and spherical coordinates forms of the Laplace equation for solution of the physical problems based on potential and for handling some engineering topics such as two dimensional fluid flows have been discussed. Furthermore, the utilization of the Laplace equation as auxiliary equation in examining the heat transfer problems was considered. The last chapter entitled 'Some aspects of Harmonic functions' is dealt with the classical application of conformal mapping in solving Laplace equation and a theorem which gives new solutions to the same equations is given.Afterwards, the relationship of the complex variable functions with the two dimensional Laplace equation is explained by emphasizing the importance of the Laplace equation in complex analysis.
A general introduction together with the well-known basic concepts has been presented in the first chapter of the present study. In the second chapter, the derivation of potential equation (Laplace equation) which is fundamental to this study and some applications of it were given.In addition, the applicability of the cylindirical and spherical coordinates forms of the Laplace equation for solution of the physical problems based on potential and for handling some engineering topics such as two dimensional fluid flows have been discussed. Furthermore, the utilization of the Laplace equation as auxiliary equation in examining the heat transfer problems was considered. The last chapter entitled 'Some aspects of Harmonic functions' is dealt with the classical application of conformal mapping in solving Laplace equation and a theorem which gives new solutions to the same equations is given.Afterwards, the relationship of the complex variable functions with the two dimensional Laplace equation is explained by emphasizing the importance of the Laplace equation in complex analysis.
Description
Tez (yüksek lisans) -- Ondokuz Mayıs Üniversitesi, 1994
Libra Kayıt No: 36193
Libra Kayıt No: 36193
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
106
