Publication: DOPGA: A New Fitness Assignment Scheme for Multi-Objective Evolutionary Algorithms
| dc.authorscopusid | 55904743500 | |
| dc.authorscopusid | 7801457993 | |
| dc.contributor.author | Ergül, E.U. | |
| dc.contributor.author | Eminoǧlu, I. | |
| dc.date.accessioned | 2020-06-21T13:57:50Z | |
| dc.date.available | 2020-06-21T13:57:50Z | |
| dc.date.issued | 2014 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Ergül] Engin Ufuk, Department of Electrical and Electronic Engineering, Amasya Üniversitesi, Amasya, Turkey; [Eminoǧlu] Ilyas, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey | en_US |
| dc.description.abstract | In this article, a new fitness assignment scheme to evaluate the Pareto-optimal solutions for multi-objective evolutionary algorithms is proposed. The proposed DOmination Power of an individual Genetic Algorithm (DOPGA) method can order the individuals in a form in which each individual (the so-called solution) could have a unique rank. With this new method, a multi-objective problem can be treated as if it were a single-objective problem without drastically deviating from the Pareto definition. In DOPGA, relative position of a solution is embedded into the fitness assignment procedures. We compare the performance of the algorithm with two benchmark evolutionary algorithms (Strength Pareto Evolutionary Algorithm (SPEA) and Strength Pareto Evolutionary Algorithm 2 (SPEA2)) on 12 unconstrained bi-objective and one tri-objective test problems. DOPGA significantly outperforms SPEA on all test problems. DOPGA performs better than SPEA2 in terms of convergence metric on all test problems. Also, Pareto-optimal solutions found by DOPGA spread better than SPEA2 on eight of 13 test problems. © 2014 Taylor and Francis. | en_US |
| dc.identifier.doi | 10.1080/00207721.2012.724095 | |
| dc.identifier.endpage | 426 | en_US |
| dc.identifier.issn | 0020-7721 | |
| dc.identifier.issn | 1464-5319 | |
| dc.identifier.issue | 3 | en_US |
| dc.identifier.scopus | 2-s2.0-84884865110 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 407 | en_US |
| dc.identifier.uri | https://doi.org/10.1080/00207721.2012.724095 | |
| dc.identifier.volume | 45 | en_US |
| dc.identifier.wos | WOS:000324683200033 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis Ltd | en_US |
| dc.relation.ispartof | International Journal of Systems Science | en_US |
| dc.relation.journal | International Journal of Systems Science | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Domination Power | en_US |
| dc.subject | DOPGA | en_US |
| dc.subject | Evolutionary Algorithms | en_US |
| dc.subject | Fitness Assignment | en_US |
| dc.subject | SPEA and SPEA2 | en_US |
| dc.subject | Test Functions | en_US |
| dc.title | DOPGA: A New Fitness Assignment Scheme for Multi-Objective Evolutionary Algorithms | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
