Publication:
DOPGA: A New Fitness Assignment Scheme for Multi-Objective Evolutionary Algorithms

dc.authorscopusid55904743500
dc.authorscopusid7801457993
dc.contributor.authorErgül, E.U.
dc.contributor.authorEminoǧlu, I.
dc.date.accessioned2020-06-21T13:57:50Z
dc.date.available2020-06-21T13:57:50Z
dc.date.issued2014
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ergül] Engin Ufuk, Department of Electrical and Electronic Engineering, Amasya Üniversitesi, Amasya, Turkey; [Eminoǧlu] Ilyas, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn this article, a new fitness assignment scheme to evaluate the Pareto-optimal solutions for multi-objective evolutionary algorithms is proposed. The proposed DOmination Power of an individual Genetic Algorithm (DOPGA) method can order the individuals in a form in which each individual (the so-called solution) could have a unique rank. With this new method, a multi-objective problem can be treated as if it were a single-objective problem without drastically deviating from the Pareto definition. In DOPGA, relative position of a solution is embedded into the fitness assignment procedures. We compare the performance of the algorithm with two benchmark evolutionary algorithms (Strength Pareto Evolutionary Algorithm (SPEA) and Strength Pareto Evolutionary Algorithm 2 (SPEA2)) on 12 unconstrained bi-objective and one tri-objective test problems. DOPGA significantly outperforms SPEA on all test problems. DOPGA performs better than SPEA2 in terms of convergence metric on all test problems. Also, Pareto-optimal solutions found by DOPGA spread better than SPEA2 on eight of 13 test problems. © 2014 Taylor and Francis.en_US
dc.identifier.doi10.1080/00207721.2012.724095
dc.identifier.endpage426en_US
dc.identifier.issn0020-7721
dc.identifier.issn1464-5319
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84884865110
dc.identifier.scopusqualityQ1
dc.identifier.startpage407en_US
dc.identifier.urihttps://doi.org/10.1080/00207721.2012.724095
dc.identifier.volume45en_US
dc.identifier.wosWOS:000324683200033
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofInternational Journal of Systems Scienceen_US
dc.relation.journalInternational Journal of Systems Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDomination Poweren_US
dc.subjectDOPGAen_US
dc.subjectEvolutionary Algorithmsen_US
dc.subjectFitness Assignmenten_US
dc.subjectSPEA and SPEA2en_US
dc.subjectTest Functionsen_US
dc.titleDOPGA: A New Fitness Assignment Scheme for Multi-Objective Evolutionary Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files