Publication:
A Generalized Caputo-Type Fractional-Order Neuron Model under the Electromagnetic Field

dc.authorscopusid57217132593
dc.authorscopusid16303495600
dc.authorscopusid56785212800
dc.authorscopusid7006487540
dc.authorscopusid57214699252
dc.authorwosidKumar, Pushpendra/Aaa-1223-2021
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorTyagi, Swati
dc.contributor.authorBanas, Jozef
dc.contributor.authorManickam, A.
dc.contributor.authorIDKumar, Pushpena/0000-0002-7755-2837
dc.date.accessioned2025-12-11T01:04:59Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kumar, Pushpendra] Univ Johannesburg, Inst Future Knowledge, POB 524, ZA-2006 Auckland Pk, South Africa; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55200 Samsun, Turkiye; [Tyagi, Swati] Amity Univ Punjab, Dept Math, Mohali 140306, Punjab, India; [Banas, Jozef] Rzeszow Univ Technol, Dept Nonlinear Anal, Al Powstancow Warszawy 8, PL-35959 Rzeszow, Poland; [Manickam, A.] VIT Bhopal Univ, Sch Adv Sci & Languages, Dept Math, Indore Highway, Bhopal 466114, Madhya Pradesh, Indiaen_US
dc.descriptionKumar, Pushpena/0000-0002-7755-2837;en_US
dc.description.abstractThis article considers a fractional-order neuron model under an electromagnetic field in terms of generalized Caputo fractional derivatives. The motivation for incorporating fractional derivatives in the previously proposed integer-order neuron model is that the fractional-order model impresses with efficient effects of the memory, and parameters with fractional orders can increase the model performance by amplifying a degree of freedom. The results on the uniqueness of the solution for the proposed neuron model are established using well-known theorems. The given model is numerically solved by using a generalized version of the Euler method with stability and error analysis. Several graphical simulations are performed to capture the variations in the membrane potential considering no electromagnetic field effects, various frequency brands of external forcing current, and the amplitude and frequency of the external magnetic radiation. The impacts of fractional-order cases are clearly justified.en_US
dc.description.sponsorshipUniversity of Johannesburgen_US
dc.description.sponsorshipOpen access funding provided by University of Johannesburg. NA.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1007/s40435-023-01134-4
dc.identifier.endpage2192en_US
dc.identifier.issn2195-268X
dc.identifier.issn2195-2698
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85149120892
dc.identifier.scopusqualityQ2
dc.identifier.startpage2179en_US
dc.identifier.urihttps://doi.org/10.1007/s40435-023-01134-4
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41193
dc.identifier.volume11en_US
dc.identifier.wosWOS:001096524100010
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofInternational Journal of Dynamics and Controlen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeuron Modelen_US
dc.subjectElectromagnetic Inductionen_US
dc.subjectGeneralized Caputo Fractional Derivativeen_US
dc.subjectEuler Methoden_US
dc.subjectError Estimationen_US
dc.subjectStabilityen_US
dc.titleA Generalized Caputo-Type Fractional-Order Neuron Model under the Electromagnetic Fielden_US
dc.typeArticleen_US
dspace.entity.typePublication

Files