Publication:
Optimum Battery State of Charge Control for Frequency Response Service

dc.authorwosidAkpinar, Kubra Nur/Oui-5793-2025
dc.authorwosidAkpınar, Kübra Nur/Aal-9252-2020
dc.authorwosidGundogdu, Burcu/I-1448-2018
dc.contributor.authorAkpinar, Kubra Nur
dc.contributor.authorGundogdu, Burcu
dc.contributor.authorOzgonenel, Okan
dc.contributor.authorIDAkpınar, Kübra Nur/0000-0003-4579-4070
dc.contributor.authorIDGundogdu, Burcu/0000-0001-9409-6709
dc.date.accessioned2025-12-11T01:16:45Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Akpinar, Kubra Nur; Ozgonenel, Okan] Ondokuz Mayis Univ, Elect Elect Engn Dept, Samsun, Turkiye; [Gundogdu, Burcu] Hakkari Univ, Colemerik VHS, Comp Technol, Hakkari, Turkiyeen_US
dc.descriptionAkpınar, Kübra Nur/0000-0003-4579-4070; Gundogdu, Burcu/0000-0001-9409-6709en_US
dc.description.abstractIn this paper frequency response, one of the most critical ancillary services, provided by grid-scale battery energy storage systems is studied with manipulating the optimum battery state of charge control area. An algorithm has been developed that primarily provides frequency response service and at the same time optimizes the battery state of charge. The difference between the algorithm developed in this study and the other algorithms is that, apart from the maximum and minimum points of the state of charge level, it has also the optimum highest and optimum lowest state of charge points. Thus, it is aimed that the battery will support the grid at the most extreme points in urgent cases and decides the power output it will provide according to the battery state of charge in the case of non-urgent cases. The algorithm used the one-second resolution 1-day frequency data which has the highest standard deviation in a month obtained from Turkey National Transmission System Operator's database as input data. Assuming a facility in Turkey which has a battery energy storage system that participates in the grid frequency response ancillary service, the output power and the battery state of charge graph are examined.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1109/ICSMARTGRID55722.2022.9848781
dc.identifier.endpage260en_US
dc.identifier.isbn9781665486057
dc.identifier.isbn9781665486040
dc.identifier.scopusqualityN/A
dc.identifier.startpage255en_US
dc.identifier.urihttps://doi.org/10.1109/ICSMARTGRID55722.2022.9848781
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42600
dc.identifier.wosWOS:001267854400079
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof10th International Conference on Smart Grid (icSmartGrid) -- Jun 27-29, 2022 -- Istanbul, Turkeyen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAncillary Servicesen_US
dc.subjectBattery Energy Storage Systemen_US
dc.subjectBattery Lifetimeen_US
dc.subjectState of Chargeen_US
dc.subjectFrequency Control Algorithmen_US
dc.subjectFrequency Responseen_US
dc.titleOptimum Battery State of Charge Control for Frequency Response Serviceen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files