Publication:
A Comparative Study on Applicability and Efficiency of Machine Learning Algorithms for Modeling Gamma-Ray Shielding Behaviors

dc.authorscopusid57210339426
dc.authorscopusid57202340458
dc.authorscopusid36141849100
dc.authorscopusid36895155300
dc.authorscopusid55900600100
dc.authorwosidAlp, Selçuk/Aaz-8921-2020
dc.authorwosidBilmez, Bayram/Aaa-5054-2022
dc.authorwosidÖz, Ersoy/Aaz-6809-2020
dc.contributor.authorBilmez, Bayram
dc.contributor.authorToker, Ozan
dc.contributor.authorAlp, Selcuk
dc.contributor.authorOz, Ersoy
dc.contributor.authorIcelli, Orhan
dc.contributor.authorIDIçelli, Orhan/0000-0002-6485-2208
dc.contributor.authorIDBilmez, Bayram/0000-0002-5687-2145
dc.contributor.authorIDToker, Ozan/0000-0002-5566-0298
dc.contributor.authorIDAlp, Selçuk/0000-0002-6545-4287
dc.date.accessioned2025-12-11T01:31:25Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Bilmez, Bayram; Toker, Ozan; Icelli, Orhan] Yildiz Tech Univ, Fac Sci & Art, Dept Phys, Istanbul, Turkey; [Bilmez, Bayram] Ondokuz Mayis Univ, Fac Sci & Art, Dept Phys, Samsun, Turkey; [Alp, Selcuk] Yildiz Tech Univ, Fac Mech Engn, Dept Ind Engn, Istanbul, Turkey; [Oz, Ersoy] Yildiz Tech Univ, Fac Art & Sci, Dept Stat, Istanbul, Turkeyen_US
dc.descriptionIçelli, Orhan/0000-0002-6485-2208; Bilmez, Bayram/0000-0002-5687-2145; Toker, Ozan/0000-0002-5566-0298; Alp, Selçuk/0000-0002-6545-4287en_US
dc.description.abstractThe mass attenuation coefficient is the primary physical parameter to model narrow beam gamma-ray attenuation. A new machine learning based approach is proposed to model gamma-ray shielding behavior of composites alternative to theoretical calculations. Two fuzzy logic algorithms and a neural network algorithm were trained and tested with different mixture ratios of vanadium slag/epoxy resin/ antimony in the 0.05 MeV-2 MeV energy range. Two of the algorithms showed excellent agreement with testing data after optimizing adjustable parameters, with root mean squared error (RMSE) values down to 0.0001. Those results are remarkable because mass attenuation coefficients are often presented with four significant figures. Different training data sizes were tried to determine the least number of data points required to train sufficient models. Data set size more than 1000 is seen to be required to model in above 0.05 MeV energy. Below this energy, more data points with finer energy resolution might be required. Neuro-fuzzy models were three times faster to train than neural network models, while neural network models depicted low RMSE. Fuzzy logic algorithms are overlooked in complex function approximation, yet grid partitioned fuzzy algorithms showed excellent calculation efficiency and good convergence in predicting mass attenuation coefficient. (c) 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.net.2021.07.031
dc.identifier.endpage317en_US
dc.identifier.issn1738-5733
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85111515862
dc.identifier.scopusqualityQ1
dc.identifier.startpage310en_US
dc.identifier.urihttps://doi.org/10.1016/j.net.2021.07.031
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44285
dc.identifier.volume54en_US
dc.identifier.wosWOS:000745913200004
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherKorean Nuclear Societyen_US
dc.relation.ispartofNuclear Engineering and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMass Attenuation Coefficienten_US
dc.subjectArtificial Neural Networken_US
dc.subjectFuzzy Logicen_US
dc.subjectNon-Linear Regression Analysisen_US
dc.titleA Comparative Study on Applicability and Efficiency of Machine Learning Algorithms for Modeling Gamma-Ray Shielding Behaviorsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files