Publication:
Multipliers and Tensor Products of Vector Valued LP (G, A) Spaces

dc.contributor.authorSaǧir, B.
dc.date.accessioned2025-12-11T02:12:23Z
dc.date.issued2003
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-tempOndokuz Mayis Univ, Fen Edebiyat Fak, TR-55139 Kurupelit, Turkeyen_US
dc.description.abstractIn this paper we define a normed space A(p)(q) (G, A) and prove some properties of this space. hi particular, we show that the space LV (G, A)circle times(Linfinity(G, A)) L-II (G, A) is isometricall isomorphic to the space A(q)(p) (G, A) and the space of multipliers from L-p (G, A) to L-q' (G, A*) is isometrically isomorphic to the dual of the space A(p)(q) (G, A) if G satisfies a property P-p(q).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.endpage501en_US
dc.identifier.issn1027-5487
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ3
dc.identifier.startpage493en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/47802
dc.identifier.volume7en_US
dc.identifier.wosWOS:000186878800009
dc.identifier.wosqualityQ3
dc.institutionauthorSaǧir, B.
dc.language.isoenen_US
dc.publisherMathematical Soc Rep Chinaen_US
dc.relation.ispartofTaiwanese Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectVector Valued L-P (G, A) Spacesen_US
dc.subjectMultipliersen_US
dc.subjectTensor Productsen_US
dc.titleMultipliers and Tensor Products of Vector Valued LP (G, A) Spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files