Publication:
Classification of Neuromuscular Diseases With Artificial Intelligence Methods

dc.authorscopusid55807927000
dc.authorscopusid7801457993
dc.authorscopusid6602822048
dc.contributor.authorKüçük, H.
dc.contributor.authorEminoǧlu, I.
dc.contributor.authorBalci, K.
dc.date.accessioned2020-06-21T13:05:13Z
dc.date.available2020-06-21T13:05:13Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Küçük] Hanife, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Eminoǧlu] Ilyas, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Balci] Kemal, Department of Internal Medicine, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn this study, a classification structure consisting of five processing stages was organized for the diagnosis of ALS and Myopathic diseases, the most common types of neuromuscular diseases.EMG (Electromyogram) signals have been passed through pre-processing, division, clustering, and feature extraction steps before being classified. Hybrid clustering method is used in clustering phase. Afterwards, feature vectors intime and frequency domains and their different combinations of multiple feature vectors (a total of 25 feature vectors) are used. In the next step, data are classified by Support Vector Machine (DVM), K-Nearest Neighbor (K-EYK) algorithm and Discriminant Analysis (DA) algorithms. Verification is used as a measure of cross-validation method. Cross-validation of the k-value of 10 is selected. Experimental results show that the proposed feature vectors are more successful than the single feature vectors of multiple feature vectors. When usedin multiple feature vectors; SVM classifier, has classified the EMG signals withhigher accuracy in according to the K-NN and DA classifiers. Total accuracy is97.39% for ALS and 86.74% for the myogenic. It is understood with this study; the classification performance depends on a high degree of feature vectors of interclass separability. © 2019 Gazi Universitesi Muhendislik-Mimarlik. All rights reserved.en_US
dc.identifier.doi10.17341/gazimmfd.571506
dc.identifier.endpage1741en_US
dc.identifier.issn1300-1884
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85069723977
dc.identifier.scopusqualityQ3
dc.identifier.startpage1725en_US
dc.identifier.trdizinid389679
dc.identifier.urihttps://doi.org/10.17341/gazimmfd.571506
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/389679/noromuskuler-hastaliklarin-yapay-zeka-yontemleri-ile-siniflandirilmasi
dc.identifier.volume34en_US
dc.identifier.wosWOS:000472481600005
dc.identifier.wosqualityQ3
dc.language.isotren_US
dc.publisherGazi Universitesi Muhendislik-Mimarlik mmfd@gazi.edu.tren_US
dc.relation.ispartofJournal of the Faculty of Engineering and Architecture of Gazi Universityen_US
dc.relation.journalJournal of the Faculty of Engineering and Architecture of Gazi Universityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAmyotrofik Lateral Sklerozisen_US
dc.subjectDiscriminant Analysisen_US
dc.subjectElectromyogramen_US
dc.subjectK-NNen_US
dc.subjectSupport Vector Machineen_US
dc.titleClassification of Neuromuscular Diseases With Artificial Intelligence Methodsen_US
dc.title.alternativeNöromüsküler Hastalıkların Yapay Zeka Yöntemleri İle Sınıflandırılmasıen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files