Publication:
Structural Modal Calibration of Historical Masonry Arch Bridge by Using a Novel Deep Neural Network Approach

dc.authorscopusid55793146000
dc.authorscopusid6506359290
dc.authorscopusid57224684510
dc.authorscopusid57189090432
dc.authorscopusid57576783000
dc.authorscopusid12783596200
dc.authorwosidHacıefendioğlu, Kemal/Aak-3192-2021
dc.authorwosidMostofi, Fatemeh/Iwu-3290-2023
dc.authorwosidDemir, Gokhan/Ize-7391-2023
dc.authorwosidToğan, Vedat/Aad-2639-2019
dc.authorwosidAlpaslan, Emre/Jsk-2515-2023
dc.authorwosidYilmaz, Mehmet Fatih/Aaa-5291-2022
dc.contributor.authorAlpaslan, Emre
dc.contributor.authorHaciefendioglu, Kemal
dc.contributor.authorYılmaz, Mehmet Fatih
dc.contributor.authorDemir, Gokhan
dc.contributor.authorMostofi, Fatemeh
dc.contributor.authorTogan, Vedat
dc.contributor.authorIDMostofi, Fatemeh/0000-0003-0974-1270
dc.contributor.authorIDYilmaz, Mehmet Fatih/0000-0002-2746-7589
dc.date.accessioned2025-12-11T01:24:08Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Alpaslan, Emre; Yilmaz, Mehmet Fatih; Demir, Gokhan] Ondokuz Mayis Univ, Dept Civil Engn, TR-55139 Samsun, Turkiye; [Haciefendioglu, Kemal; Mostofi, Fatemeh; Togan, Vedat] Karadeniz Tech Univ, Dept Civil Engn, TR-61080 Trabzon, Turkiyeen_US
dc.descriptionMostofi, Fatemeh/0000-0003-0974-1270; Yilmaz, Mehmet Fatih/0000-0002-2746-7589;en_US
dc.description.abstractThe transportation system should be sustained and given serves to improve the well-being of society and continue the improvement of civilization. Historical masonry bridges constitute a critical and sensitive part of the transportation system. As a result of being built a hundred years ago, the bridges have been exposed to many severe deterioration processes and destructive environmental and manmade damage. Therefore, the existing performance of these bridges should be determined realistically in a proper way. This study expresses a novel approach to creating a realistic finite element model of the existing masonry arc bridge. The initial finite element model of the bridge was created according to the architectural drawing of the bridge. Then, the density and elastic modulus of the bridge structural components were investigated statistically and the upper and lower limits were determined. The central composite design approach was used to generate an analytical model cloud, and experimental studies are conducted to determine the real mode shape and frequency of the bridge. Finally, a novel deep neural network approach including deep neural network and principal component analysis-based approaches is proposed to determine the realistic finite element model of the bridge using the results of the analytical models and experimental study. With the proposed methods, the difference between the natural frequency values obtained after the finite element model calibration process and those obtained from experimental measurements was obtained as 1.52% and 0.69% on average in the 6 evaluated mode shapes.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s40996-023-01300-w
dc.identifier.endpage352en_US
dc.identifier.issn2228-6160
dc.identifier.issn2364-1843
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85179310150
dc.identifier.scopusqualityQ2
dc.identifier.startpage329en_US
dc.identifier.urihttps://doi.org/10.1007/s40996-023-01300-w
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43445
dc.identifier.volume48en_US
dc.identifier.wosWOS:001121837900001
dc.language.isoenen_US
dc.publisherSpringer Int Publ Agen_US
dc.relation.ispartofIranian Journal of Science and Technology - Transactions of Civil Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHistorical Masonry Arch Bridgeen_US
dc.subjectDeep Neural Networken_US
dc.subjectPrincipal Component Analysisen_US
dc.subjectModal Calibrationen_US
dc.subjectOperational Modal Testen_US
dc.titleStructural Modal Calibration of Historical Masonry Arch Bridge by Using a Novel Deep Neural Network Approachen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files