Publication: Tek Diş Eksikliğinde Farklı Adet ve Tasarımlarda İmplant Uygulanmasının Farklı Kuvvetler Altında Oluşturduğu Stres Dağılımının Sonlu Elemanlar Analiz Yöntemi İle İncelenmesi
Abstract
Amaç: Bu çalışmanın amacı, molar tek diş eksikliği rehabilitasyonu için farklı sayı ve tasarımlardaki implantlar ile desteklenen protetik üniteye uygulanan fonksiyonel ve parafonksiyonel kuvvetlerin neden olduğu stres dağılımlarının değerlendirilmesidir. Materyal ve Metot: Bu çalışmada 3B Modelleme yöntemi kullanılarak 5 farklı model oluşturulmuştur. Bunlar arasında Model 1'de 4.8 mm çapında bone-level implant, Model 2'de 6.5 mm çapında ve kısa/geniş implant, Model 3'te 2 adet 3.3 mm çapında bone-level implant, Model 4'te 2 adet 3.3 mm çapında tissue-level implant ve Model 5'te 2 adet 3,3 mm çapında bone-level konik implant kullanılmıştır. Modeller, protez ünitesine farklı büyüklük ve yönde uygulanan kuvvetlere dayalı olarak A ve B olmak üzere iki alt gruba ayrıldı. Gerilme dağılımını değerlendirmek için Sonlu Eleman Analizi yöntemi kullanılmıştır. Bulgular: Molar tek diş eksikliği vakalarında, tek implant uygulamalarına göre protetik yapı iki implant veya bir geniş/kısa implant ile desteklendiğinde implant ve çevre kemik dokusuna iletilen stres değerlerinde azalma gözlemlenmiştir. Parafonksiyonel kuvvetlerin etkisi altında en yüksek gerilme ve gerinim implant yuvalarının bukkal ve lingual yüzeylerinde ve kompresif kuvvetleri tanımlayan minimum asal gerilme ve gerinim değerlerinde gözlenmiştir. Düşük yoğunluklu kemik dokularındaki minimum asal gerilme değerlerinin tüm gruplarda yüksek yoğunluklu kemik dokularına göre daha yüksek olduğu belirlenmiştir. Sonuç: Bruksizmi olan bireylerde posterior tek diş eksikliğinin rehabilitasyonu amaçlı iki implant üzerine tek kuron veya yeni nesil geniş çaplı ve kısa implant üzeri tek kuron uygulamaları stres dağılımını azaltma açısından avantajlar sunmaktadır. Anahtar Sözcükler: Dental İmplant, Bruksizm, Sonlu Elemanlar Stres Analizi, Mekanostat teorisi
Aim: The aim of this study is to evaluate stress distribution created by application of functional and parafunctional forces on prosthetic unit supported by different numbers and designs of implants for molar single tooth replacement. Material and Method: In this study, 5 different models were set by employing the 3D Modeling method. These included 4.8 mm diameter bone level implant in Model 1, 6.5 mm diameter and short/wide implant in Model 2, 2x3.3 mm diameter bone level implants in Model 3, 2x3.3 mm diameter tissue level implants in Model 4, and 2x3.3 mm diameter bone level tapered implants in Model 5. The models were allocated into two subgroups, A and B, based on the forces applied in diverse magnitude and direction on the prosthetic unit. Finite Element Analysis method was utilized to assess the stress distribution. Results: In single molar tooth replacement cases, the stress levels affecting the implants and bone tissue decreased when the prosthetic structure was supported by two implants or one wide/short implant compared to single implant applications. Under the influence of parafunctional forces, the highest stress and strain were observed on the buccal and lingual surfaces of the implant sockets and at the minimum principal stress and strain values that define the compressive forces. It was determined that the minimum principal strain values in low-density bone tissues were higher in all groups compared to those high-density bone tissues. Conclusion: For the rehabilitation of posterior single tooth replacement in individuals with bruxomania, single crown over two implants or new generation short and large diameter implants offer advantages in terms of reducing stress distribution. Keywords: Dental Implant, Bruxism, Finite Element Stress Analysis, Mechanostat theory
Aim: The aim of this study is to evaluate stress distribution created by application of functional and parafunctional forces on prosthetic unit supported by different numbers and designs of implants for molar single tooth replacement. Material and Method: In this study, 5 different models were set by employing the 3D Modeling method. These included 4.8 mm diameter bone level implant in Model 1, 6.5 mm diameter and short/wide implant in Model 2, 2x3.3 mm diameter bone level implants in Model 3, 2x3.3 mm diameter tissue level implants in Model 4, and 2x3.3 mm diameter bone level tapered implants in Model 5. The models were allocated into two subgroups, A and B, based on the forces applied in diverse magnitude and direction on the prosthetic unit. Finite Element Analysis method was utilized to assess the stress distribution. Results: In single molar tooth replacement cases, the stress levels affecting the implants and bone tissue decreased when the prosthetic structure was supported by two implants or one wide/short implant compared to single implant applications. Under the influence of parafunctional forces, the highest stress and strain were observed on the buccal and lingual surfaces of the implant sockets and at the minimum principal stress and strain values that define the compressive forces. It was determined that the minimum principal strain values in low-density bone tissues were higher in all groups compared to those high-density bone tissues. Conclusion: For the rehabilitation of posterior single tooth replacement in individuals with bruxomania, single crown over two implants or new generation short and large diameter implants offer advantages in terms of reducing stress distribution. Keywords: Dental Implant, Bruxism, Finite Element Stress Analysis, Mechanostat theory
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
220
