Publication:
Polynomial Multiplication in NTRU Prime: Comparison of Optimization Strategies on Cortex-M4

dc.authorscopusid43261000900
dc.authorscopusid57321537900
dc.authorscopusid57321543200
dc.authorscopusid57321521900
dc.authorscopusid57321522800
dc.authorscopusid57321548100
dc.authorscopusid55446389700
dc.contributor.authorAlkım, E.
dc.contributor.authorCheng, D.Y.-L.
dc.contributor.authorChung, C.-M.M.
dc.contributor.authorEvkan, H.
dc.contributor.authorHuang, L.W.-L.
dc.contributor.authorHwang, V.
dc.contributor.authorLi, C.-L.T.
dc.date.accessioned2025-12-11T00:28:26Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Alkım] Erdem, Ondokuz Mayis Üniversitesi, Samsun, Turkey, Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Hessen, Germany; [Cheng] Dean Yun Li, Academia Sinica Taiwan, Nankang, Taipei, Taiwan, National Taiwan University, Taipei, Taiwan; [Chung] Chi Ming Marvin, Academia Sinica Taiwan, Nankang, Taipei, Taiwan; [Evkan] Hülya, Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Hessen, Germany; [Huang] Weilun, Academia Sinica Taiwan, Nankang, Taipei, Taiwan; [Hwang] Vincent, Academia Sinica Taiwan, Nankang, Taipei, Taiwan, National Taiwan University, Taipei, Taiwan; [Li] Ching Lin Trista, Academia Sinica Taiwan, Nankang, Taipei, Taiwan, National Taiwan University, Taipei, Taiwan; [Niederhagen] Ruben, Syddansk Universitet, Odense, Syddanmark, Denmark; [Shih] Cheng Jhih, Academia Sinica Taiwan, Nankang, Taipei, Taiwan; [Wälde] Julian, Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Hessen, Germany; [Yang] Boyin, Academia Sinica Taiwan, Nankang, Taipei, Taiwanen_US
dc.description.abstractThis paper proposes two different methods to perform NTT-based polynomial multiplication in polynomial rings that do not naturally support such a multi-plication. We demonstrate these methods on the NTRU Prime key-encapsulation mechanism (KEM) proposed by Bernstein, Chuengsatiansup, Lange, and Vredendaal, which uses a polynomial ring that is, by design, not amenable to use with NTT. One of our approaches is using Good’s trick and focuses on speed and supporting more than one parameter set with a single implementation. The other approach is using a mixed radix NTT and focuses on the use of smaller multipliers and less memory. On a ARM Cortex-M4 microcontroller, we show that our three NTT-based imple-mentations, one based on Good’s trick and two mixed radix NTTs, provide between 32% and 17% faster polynomial multiplication. For the parameter-set ntrulpr761, this results in between 16% and 9% faster total operations (sum of key generation, encapsulation, and decapsulation) and requires between 15% and 39% less memory than the current state-of-the-art NTRU Prime implementation on this platform, which is using Toom-Cook-based polynomial multiplication. © 2021, Ruhr-University of Bochum. All rights reserved.en_US
dc.identifier.doi10.46586/tches.v2021.i1.217-238
dc.identifier.endpage238en_US
dc.identifier.issn2569-2925
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85109513261
dc.identifier.scopusqualityQ1
dc.identifier.startpage217en_US
dc.identifier.urihttps://doi.org/10.46586/tches.v2021.i1.217-238
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36545
dc.identifier.volume2021en_US
dc.language.isoenen_US
dc.publisherRuhr-University of Bochumen_US
dc.relation.ispartofIACR Transactions on Cryptographic Hardware and Embedded Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCortex-M4en_US
dc.subjectNTRU Primeen_US
dc.subjectNTTen_US
dc.subjectPolynomial Multiplicationen_US
dc.subjectPQCen_US
dc.titlePolynomial Multiplication in NTRU Prime: Comparison of Optimization Strategies on Cortex-M4en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files